Assessing MODIS16A2 actual evapotranspiration across three spatial resolutions in Uruguay

Authors

  • Rafael Navas Instituto Nacional de Investigación Agropecuaria (INIA), Programa Nacional de Investigación en Producción y Sustentabilidad Ambiental, Estación La Estanzuela, Colonia, Uruguay. https://orcid.org/0000-0001-8559-9523
  • Guadalupe Tiscornia Instituto Nacional de Investigación Agropecuaria (INIA), Unidad GRAS, Estación Experimental Wilson Ferrería Aldunate, INIA Las Brujas, Canelones, Uruguay. https://orcid.org/0000-0002-6650-651X
  • Andrés G. Berger Instituto Nacional de Investigación Agropecuaria (INIA), Programa Nacional de Cultivos de Secano, Estación La Estanzuela, Colonia, Uruguay. https://orcid.org/0000-0003-1096-8421
  • Álvaro Otero Instituto Nacional de Investigación Agropecuaria (INIA), Programa Nacional de Investigación en Producción y Sustentabilidad Ambiental, Estación Experimental INIA Salto Grande, Salto, Uruguay. https://orcid.org/0000-0002-6962-6584

DOI:

https://doi.org/10.31285/AGRO.25.429

Keywords:

MODIS16A2, satellite evapotranspiration, water balance, SWAT, Eddy Covariance flux

Abstract

Evapotranspiration (ET) is a key process in hydrological systems and, consequently, in agroecosystems. It can be measured or derived with a large variety of models at scales ranging from leaf to catchment. MODIS16A2 is a satellite ET product with 500 meters / 8-day spatio-temporal resolution worldwide. It is based on the Penman-Monteith equation and considers the effect of vegetation dynamics, albedo and land cover. This technical paper compares the ET estimated from MODIS16A2 against the ET estimated at different scales from three reference methods: (1) the INIA-GRAS Water Balance on a country-scale, (2) the SWAT model of the Santa Lucia basin on the catchment scale, and (3) the Eddy Covariance Flux located in Colonia on a farmer scale. The analysis shows similarities between MODIS16A2 and the reference methods depending on seasonality, geographic location and scale of ET estimation. The assumptions about vegetation cover, vegetation dynamics, meteorological forcing and soil characteristics of the reference methods compared with MODIS16A2 ones could explain some deviations in the ET estimations. The results of this work contribute with a first approximation towards the quantification of the uncertainty of MODIS16A2 in Uruguay.

Downloads

Download data is not yet available.

References

Allen RG, Pereira LS, Raes D, Smith M, editors. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO; 1998. 300p. (FAO irrigation and drainage; 56).

Arnold JG, Srinivasan R, Muttiah RS, Williams JR. Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc. 1998;34(1):73-89.

Aubinet M, Vesala T, Papale D, editors. Eddy covariance: a practical guide to measurement and data analysis. Dordrecht: Springer; 2012. 438p. (Springer atmospheric sciences).

Berger AG, Otero A, Morales X, Calistro R. Actual Evapotranspiration Measurement Trough Eddy Covariance in Uruguay. Agrociencia Uruguay. 2015;19(NE):4.

De Vera A, Terra R. Combining CMORPH and Rain Gauges Observations over the Rio Negro Basin. J Hydrometeorol. 2012;13(6):1799-809.

Hastings F, Mer F, Alonso J, Navas R, Kok P, Pereyra P, Badano L, Neighbur N, Baccino A, Diaz F, Baethgen W, Vervoort RW. Modelación con SWAT en la cuenca del Santa Lucía: un ejemplo exitoso de trabajo interinstitucional e interdisciplinario para la gestión de los Recursos Hídricos en Uruguay. In: II Congreso de agua, ambiente y energía [Internet]. Montevideo: AUGM; 2019 [cited 2021 May 20]. 6p. Available from: https://bit.ly/341Uy7a.

INIA. Balance hídrico suelos Uruguay [Internet]. Montevideo: INIA; c2021 [cited 2021 May 20]. Available from: https://bit.ly/3wmg173.

INIA. Cálculo Evapotranspiración [Internet]. Montevideo: INIA; c2021 [cited 2021 May 20]. Available from: https://bit.ly/3yr4rJH.

INIA. Cálculo precipitación efectiva [Internet]. Montevideo: INIA; c2021 [cited 2021 May 20]. Available from: https://bit.ly/3yr4rJH.

INIA. Modelo logarítmico BH [Internet]. Montevideo: INIA; c2021 [cited 2021 May 20]. Available from: https://bit.ly/3bJdImJ.

Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT. An overview of MODIS Land data processing and product status. Remote Sens Environ. 2002;83(1-2):3-15.

Mer F, Badano L, Neighbur N, Hastings F, Baethgen W, Alonso J, Navas R, Nervi E, Vervoortet RW. SWAT Subcuenca Santa Lucia [Internet]. [place unknown]: OSF; 2020 [cited 2021 May 20]; Available from: https://bit.ly/3fsewxi.

Moratiel R, Spano D, Nicolosi P, Snyder RL. Correcting soil water balance calculations for dew, fog, and light rainfall. Irrig Sci. 2013;31(3):423-9.

Mu Q, Zhao M, Running SW. MODIS Global Terrestrial Evapotranspiration (ET) Product: NASA MOD16A2/A3 [Internet]. Washington (DC): NASA; 2013 [cited 2021 May 20]. 55p. (Algorithm Theoretical Basis Document Collection; 5). Available from: https://bit.ly/3ypXRDg.

Muttiah RS, Wurbs RA. Scale-dependent soil and climate variability effects on watershed water balance of the SWAT model. J Hydrol. 2002;256(3-4):264-85.

Otero A, Berger AG, Morales X, Calistro R. Eddy Covariance Estimates of Evapotranspiration in Irrigated and Rainfed Soybean in Uruguay. Agrociencia Uruguay. 2015;19(NE):8.

Presidencia de la República (UY). Infraestructura de Datos Espaciales [Internet]. Montevideo: gub.uy; [date unknown; cited 2021 May 20]. Available from: https://bit.ly/346VOGm.

Running S. MOD16A2 [Internet]. Version v006. Sioux Falls (SD): USGS; 2017 [cited 2021 May 20]. Available from: https://bit.ly/3v5urrL.

Sapriza G, Gamazo P, Erasun V, Banega R, Poses A, Navas R, Alcoba M, Gosset M. Rainfall estimation by microwave links in Uruguay: first results [abstract on Internet]. In: 21st EGU General Assembly. [place unknown]: EGU; 2019 [cited 2021 May 20]. 1p. Available from: https://bit.ly/345TJKQ.

Vervoort W, Miechels SF, van Ogtrop FF, Guillaume JHA. Remotely sensed evapotranspiration to calibrate a lumped conceptual model: pitfalls and opportunities. J Hydrol. 2014;519:3223-36.

Published

2021-06-25

How to Cite

1.
Navas R, Tiscornia G, Berger AG, Otero Álvaro. Assessing MODIS16A2 actual evapotranspiration across three spatial resolutions in Uruguay. Agrocienc Urug [Internet]. 2021 Jun. 25 [cited 2024 Mar. 28];25(2):e429. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/429

Issue

Section

Natural and environmental resources
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)