SanAntonioApp

interactive visualization and repository of spatially distributed flow duration curves of the San Antonio Creek - Uruguay

Authors

DOI:

https://doi.org/10.31285/AGRO.26.979

Keywords:

flow duration curves, distributed hydrological models, WFLOW-HBV, San Antonio catchment, open access application

Abstract

Agricultural irrigation projects require information on the quantity and frequency of streamflow to design irrigation systems. On the one hand, this information is obtained from gauging stations or hydrologic models. On the other hand, there are few gauging stations, and hydrologic models are expensive to implement, especially for small irrigation projects. This work proposes a method for estimating spatially distributed Flow Duration Curves (FDC), and describes the SanAntonioApp interactive application with open access and repository, which is used to share the results of this work. The proposed framework uses three years of records of a rich hydrometeorological network to implement, optimise and cross-validate the WFLOW-HBV distributed hydrologic model in San Antonio Creek (Salto, Uruguay). Then, FDC are generated by extending the simulation period with the long records of an agro-climatological station (30 years). The results of this work contribute to evaluate the water availability of the San Antonio catchment and provide information on how often this availability is guaranteed. In addition, the application allows estimating the probability of exceedance of the daily streamflow for a given month and location. This function could be used to estimate the environmental flow established in the current water regulation in Uruguay.

Downloads

Download data is not yet available.

References

Acreman MC, Dunbar MJ. Defining environmental river flow requirements?: a review. Hydrol Earth Syst Sci Discuss. 2004;8(5):861-76.

Ala-aho P, Soulsby C, Wang H, Tetzlaff D. Integrated surface-subsurface model to investigate the role of groundwater in headwater catchment runoff generation: a minimalist approach to parameterisation. J Hydrol. 2017;547:664-77.

Aprobacion de medidas para que los usos de las aguas publicas aseguren el caudal que permita la proteccion del ambiente y criterios de manejo ambientalmente adecuados de las obras hidraulicas. Decreto N° 368/018 [Internet]. 2018 [cited 2022 Aug 22]. Available from: https://www.impo.com.uy/bases/decretos/368-2018

Arnaud P, Lavabre J, Fouchier C, Diss S, Javelle P. Sensitivity of hydrological models to uncertainty in rainfall input. Hydrol Sci J. 2011;56(3):397-410.

Arnold JG, Youssef MA, Yen H, White MJ, Sheshukov AY, Sadeghi AM, Moriasi DN, Steiner JL, Amatya DM, Skaggs RW, Haney EB, Jeong J, Arabi M, Gowda PH. Hydrological processes and model representation: impact of soft data on calibration. Trans ASABE. 2015;58(6):1637-60.

Arthington AH. Environmental flows: saving rivers in the third millennium. Berkeley: University of California Press; 2012. 424p.

Aznarez C, Jimeno-Sáez P, López-Ballesteros A, Pacheco JP, Senent-Aparicio J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021;13(10):2014. doi:10.3390/rs13102014.

Bergström S. Development and application of a conceptual runoff model for Scandinavian Catchments. Norrköping: Sveriges Meteorologiska OCH Hydrologiska Institut; 1976. 162p. SMHI Rapporter.

Bergström S. The HBV model: its structure and applications. SMHI Reports Hydrology [Internet]. 1992 [cited 2022 Aug 24];(4):32p. Available from: https://www.smhi.se/polopoly_fs/1.83592!/Menu/general/extGroup/attachmentColHold/mainCol1/file/RH_4.pdf

Beven K, Binley A. The future of distributed models: model calibration and uncertainty prediction. Hydrol Process. 1992;6(3):279-98.

Blöschl G, editor. Runoff prediction in ungauged basins: synthesis across processes, places and scales. Cambridge: Cambridge University Press; 2013. 465p.

Brazier RE, Beven KJ, Freer J, Rowan JS. Equifinality and uncertainty in physically based soil erosion models: application of the GLUE methodology to WEPP–the Water Erosion Prediction Project–for sites in the UK and USA. Earth Surf Process Landf. 2000;25(8):825-45.

Craven J. Python implementation of the HBV Hydrological Model [Internet]. 2021 [cited 2022 Aug 22]. Available from: https://github.com/johnrobertcraven/hbv_hydromodel

Gan Y, Liang XZ, Duan Q, Ye A, Di Z, Hong Y, Li J. A systematic assessment and reduction of parametric uncertainties for a distributed hydrological model. J Hydrol. 2018;564:697-711.

Germann U, Berenguer M, Sempere-Torres D, Zappa M. REAL-Ensemble radar precipitation estimation for hydrology in a mountainous region. Q J R Meteorol Soc. 2009;135(639):445-56.

Gupta HV, Kling H, Yilmaz KK, Martinez GF. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J Hydrol. 2009;377(1-2):80-91.

Habib E, Aduvala AV, Meselhe EA. Analysis of radar-rainfall error characteristics and implications for streamflow simulation uncertainty. Hydrol Sci J. 2008;53(3):568-87.

Hornberger GM, Spear RC. Approach to the preliminary analysis of environmental systems. J Environ Manage. 1981;12:7-18.

HRL. HBV-EDU Hydrologic Model [Internet]. Version 1.0.0.0. 2021 [cited 2022 Aug 22]. Available from: https://www.mathworks.com/matlabcentral/fileexchange/41395-hbv-edu-hydrologic-model

Jayathilake DI, Smith T. Understanding the role of hydrologic model structures on evapotranspiration-driven sensitivity. Hydrol Sci J. 2020;65(9):1474-89.

Kavetski D, Kuczera G, Franks SW. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory. Water Resour Res. 2006;42(3). doi:10.1029/2005WR004376.

Kling H, Fuchs M, Paulin M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J Hydrol. 2012;424-425:264-77.

Knoben WJM, Freer JE, Woods RA. Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrol Earth Syst Sci. 2019;23(10):4323-31.

Lindström G, Johansson B, Persson M, Gardelin M, Bergström S. Development and test of the distributed HBV-96 hydrological model. J Hydrol. 1997;201(1):272-88.

Ministerio de Ganadería, Agricultura y Pesca, RENARE (UY). Mapa General de Suelos del Uruguay, según Soil Taxonomy USDA [Internet]. IDEUy. 2001 [cited 2022 Aug 22]. Available from: https://visualizador.ide.uy/geonetwork/srv/api/records/1335f1c8-65eb-46df-8fba-9310a338e692.

Ministerio de Vivienda y Ordenamiento Territorial (UY). Cobertura del suelo [Internet]. Montevideo: MVOTMA; 2011 [cited 2022 Aug 24]. Available from: https://sit.mvotma.gub.uy/geonetwork/srv/spa/catalog.search#/metadata/b8b30f73-67f8-4535-a505-9ac953984159

Molfino JH, Califra A. Agua disponible de las tierras del Uruguay. Montevideo: MGAP; 2001. 13p.

Narbondo S, Gorgoglione A, Crisci M, Chreties C. Enhancing physical similarity approach to predict runoff in ungauged watersheds in sub-tropical regions. Water. 2020;12(2):528. doi:10.3390/w12020528.

Navas R. rafaelnavas/SanAntonioApp: SanAntonioApp [Internet]. Zenodo. 2021 [cited 2022 Aug 22]. Available from: https://zenodo.org/record/5223882.

Navas R, Alonso J, Gorgoglione A, Vervoort RW. Identifying climate and human impact trends in streamflow: a case study in Uruguay. Water. 2019;11(7):1433. doi:10.3390/w11071433.

Navas R, Delrieu G. Distributed hydrological modeling of floods in the Cévennes-Vivarais region, France: impact of uncertainties related to precipitation estimation and model parameterization. J Hydrol. 2018;565:276-88.

Osuch M, Romanowicz RJ, Booij MJ. The influence of parametric uncertainty on the relationships between HBV model parameters and climatic characteristics. Hydrol Sci J. 2015;60(7-8):1299-316.

Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci. 2007;11(5):1633-44.

Perrin C, Michel C, Andréassian V. Improvement of a parsimonious model for streamflow simulation. J Hydrol. 2003;279(1-4):275-89.

Pilgrim DH. Some problems in transferring hydrological relationships between small and large drainage basins and between regions. J Hydrol. 1983;65(1-3):49-72.

Pushpalatha R, Perrin C, Moine NL, Andréassian V. A review of efficiency criteria suitable for evaluating low-flow simulations. J Hydrol. 2012;420-421:171-82.

R Core Team. R: The R Project for Statistical Computing [Internet]. 2021 [cited 2022 Aug 22]. Available from: https://www.r-project.org/.

Saelthun NR. The Nordic HBV Model [Internet]. [place unknown]: Hydrology Department; 1996 [cited 2022 Aug 22]. 27p. (Publication; nº 7). Available from: https://www.osti.gov/etdeweb/servlets/purl/515690

Sapriza-Azuri G, Gamazo P, Erasun V, Banega R, Poses A, Navas R, Alcoba M, Gosset M. Rainfall estimation by microwave links in Uruguay: first results. Geophys Res Abstr [Internet]. 2019 [cited 2022 Aug 22];21:EGU2019-5229. Available from: https://meetingorganizer.copernicus.org/EGU2019/EGU2019-5229.pdf.

Schellekens J, van Verseveld W, Visser M, hcwinsemius, laurenebouaziz, tanjaeuser, sandercdevries, cthiange, hboisgon, DirkEilander, DanielTollenaar, aweerts, Fedor Baart, Pieter9011, Maarten Pronk, arthur-lutz, ctenvelden, Imme1992, Jansen M. openstreams/wflow: Bug fixes and updates for release 2020.1.2 [Internet]. 2020 Nov 26 [cited 2022 Aug 22]. Available from: https://zenodo.org/record/593510

Schellekens J. The wflow_routing Model — wflow documentation [Internet]. Revision 2c69dde2. 2019 [cited 2022 Aug 22]. Available from: https://wflow.readthedocs.io/en/stable/wflow_routing.html

Silveira L, Gamazo P, Alonso J, Martínez L. Effects of afforestation on groundwater recharge and water budgets in the western region of Uruguay. Hydrol Process. 2016;30(20):3596-608.

Slater LJ, Thirel G, Harrigan S, Delaigue O, Hurley A, Khouakhi A, Prosdocimi I, Vitolo C, Smith K. Using R in hydrology: a review of recent developments and future directions. Hydrol Earth Syst Sci. 2019;23(7):2939-63.

Tegegne G, Park DK, Kim YO. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. J Hydrol Reg Stud. 2017;14:49­66.

Toum E. HBV.IANIGLA: Modular Hydrological Model [Internet]. 2021 [cited 2022 Aug 22]. Available from: https://CRAN.R­project.org/package=HBV.IANIGLA

Vogel RM, Fennessey NM. Flow‐duration curves: I. new interpretation and confidence intervals. J Water Resour Plan Manag. 1994;120(4):485-504.

Wetterhall F. HBV – The most famous hydrological model of all?: An interview with its father: Sten Bergström. HEPEX [Internet]. 2014 Dec 16 [cited 2022 Aug 22]. Available from: https://hepex.inrae.fr/the-hbv-model-40-years-and-counting/

World Meteorological Organization. Manual on stream gauging. Geneva: WMO; 2010. 2p.

Published

2022-09-06

How to Cite

1.
Navas R, Erasun V, Banega R, Sapriza G, Saracho A, Gamazo P. SanAntonioApp: interactive visualization and repository of spatially distributed flow duration curves of the San Antonio Creek - Uruguay. Agrocienc Urug [Internet]. 2022 Sep. 6 [cited 2022 Dec. 6];26(2):e979. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/979

Issue

Section

Natural and environmental resources