Physiological response of Poncirus trifoliata rootstock to infection by an RB of Citrus tristeza virus isolate
DOI:
https://doi.org/10.31285/AGRO.29.1636Keywords:
citrus, CTV, growth parameters, photosynthesis, resistance breaking isolatesAbstract
In citrus growing areas where Citrus tristeza virus (CTV) is endemic, Poncirus trifoliata is commonly used as a rootstock to prevent tree decline. However, resistance breaking (RB) CTV isolates, capable of systemically infecting P. trifoliata, have been identified. Nevertheless, their effects on the rootstock remain understudied. Therefore, the aim of this work was to evaluate the physiological response of P. trifoliata to infection by a local RB isolate (RB-UY1), and determine its effects on grafted scions, using Navel orange (N/P. trifoliata) and Mexican lime (ML/P. trifoliata) as models. Growth parameters, symptoms expression, photosynthetic activity, and oxidative stress were periodically recorded. The results showed that the photosynthetic activity was not affected by the RB-UY1 isolate in P. trifoliata nor in grafted scions. Oxidative damage was not detected in any treatment, despite higher levels of hydrogen peroxide and superoxide radicals in RB-inoculated plants. Nonetheless, a decline in growth was recorded in P. trifoliata and ML/P. trifoliata, but not in N/P. trifoliata. In response to the RB-UY1 infection, there was a significant increase in total phenol concentration in the rootstock and N/P. trifoliata; however, enzyme activity of catalase and ascorbate peroxidase did not differ among treatments. In conclusion, infection by the RB-UY1 isolate affected growth rootstock over time, but did not compromise the physiological performance of N/P. trifoliate scion. These findings demonstrate a clear host-viral isolate interaction and underscore the need for further studies to elucidate the underlying mechanisms of host response to RB-CTV isolates.
Downloads
References
Albiach-Marti M, Grosser J, Gowda S, Mawassi M, Satyanarayana T, Garnsey S, Dawson W. Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Mol Breed. 2004;14:117-28. Doi: 10.1023/B:MOLB.0000038000.51218.a7. DOI: https://doi.org/10.1023/B:MOLB.0000038000.51218.a7
Arbona V, Flors V, Jacas J, García-Agustín P, Gómez-Cadenas A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol. 2003;44(4):388-94. Doi: 10.1093/pcp/pcg059. DOI: https://doi.org/10.1093/pcp/pcg059
Bertolini E, Moreno A, Capote N, Olmos A, de Luis A, Vidal E, Pérez-Panadés J, Cambra M. Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur J Plant Pathol. 2008;120:177-88. Doi: 10.1007/s10658-007-9206-9. DOI: https://doi.org/10.1007/s10658-007-9206-9
Björkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 1987;170(4):489-504. Doi: 10.1007/BF00402983. DOI: https://doi.org/10.1007/BF00402983
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. Doi: 10.1016/0003-2697(76)90527-3. DOI: https://doi.org/10.1006/abio.1976.9999
Cook G, van Vuuren SP, Breytenbach JHJ, Steyn C, Burger JT, Maree HJ. Characterization of Citrus tristeza virus single-variant sources in grapefruit in greenhouse and field trials. Plant Dis. 2016;100(11):2251-6. Doi: 10.1094/PDIS-03-16-0391-RE. DOI: https://doi.org/10.1094/PDIS-03-16-0391-RE
Dawson WO, Bar-Joseph M, Garnsey SM, Moreno P. Citrus tristeza virus: making an ally from an enemy. Annu Rev Phytopathol. 2015;53:137-55. Doi: 10.1146/annurev-phyto-080614-120012. DOI: https://doi.org/10.1146/annurev-phyto-080614-120012
Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S. Citrus tristeza virus-host interactions. Front Microbiol. 2013;4:88. Doi: 10.3389/fmicb.2013.00088. DOI: https://doi.org/10.3389/fmicb.2013.00088
Dhindsa S, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot. 1981;32:79-91. Doi: 10.1093/jxb/32.1.79. DOI: https://doi.org/10.1093/jxb/32.1.79
Dória MS, Sousa AO, Barbosa Cde J, Costa MG, Gesteira Ada S, Souza RM, Freitas AC, Pirovani CP. Citrus tristeza virus (CTV) causing proteomic and enzymatic changes in sweet orange variety "Westin". PLoS One. 2015;10(7):e0130950. Doi: 10.1371/journal.pone.0130950. DOI: https://doi.org/10.1371/journal.pone.0130950
Folimonova SY, Achor D, Bar-Joseph M. Walking together: cross-protection, genome conservation, and the replication machinery of Citrus tristeza virus. Viruses. 2020;12(12):1353. Doi: 10.3390/v12121353. DOI: https://doi.org/10.3390/v12121353
Folimonova SY, Sun YD. Citrus Tristeza virus: from pathogen to panacea. Annu Rev Virol. 2022;9(1):417-35. Doi: 10.1146/annurev-virology-100520-114412. DOI: https://doi.org/10.1146/annurev-virology-100520-114412
Garnsey S, Gumpf D, Roistacher C, Civerolo E, Lee R, Yokomi R, Bar-Joseph M. Toward standarized evaluation of the biological properties of Citrus tristeza virus. Phytophylactica [Internet]. 1987 [cited 2025 May 2];19:151-7. Available from: https://hdl.handle.net/10520/AJA03701263_997.
Hančević K, Tomislav R, Paskovic I, Urlić B. Biochemical and physiological responses to long‐term Citrus tristeza virus infection in Mexican lime plants. Plant Pathol. 2018;67(4):987-94. Doi: 10.1111/ppa.12799. DOI: https://doi.org/10.1111/ppa.12799
Harper SJ, Cowell SJ, Robertson CJ, Dawson WO. Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology. 2014;460-461:91-9. Doi: 10.1016/j.virol.2014.04.035. DOI: https://doi.org/10.1016/j.virol.2014.04.035
Harper SJ, Dawson TE, Pearson MN. Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Arch Virol. 2010;155(4):471-80. Doi: 10.1007/s00705-010-0604-5. DOI: https://doi.org/10.1007/s00705-010-0604-5
Hernández-Rodríguez L, Bertalmío A, Arruabarrena A, Rubio L, Rivas F, Benítez-Galeano MJ, Colina R, Maeso D. First report of the Citrus tristeza virus trifoliate resistance-breaking (RB) genotype in 'Newhall' sweet Orange in South America. Plant Dis. 2017;101(6):1063. Doi: 10.1094/PDIS-04-16-0430-PDN. DOI: https://doi.org/10.1094/PDIS-04-16-0430-PDN
Hull R. Virus-plant interactions in non-permissive and permissive host. In: Plant Virology. 5th ed. London: Academic Press; 2014. p. 605-68. DOI: https://doi.org/10.1016/B978-0-12-384871-0.00011-X
Jiang T, Zhou T. Unraveling the mechanisms of virus-induced symptom development in plants. Plants (Basel). 2023;12(15):2830. Doi: 10.3390/plants12152830. DOI: https://doi.org/10.3390/plants12152830
Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski DJ, Dawson WO. Complete sequence of the citrus tristeza virus RNA genome. Virology. 1995;208(2):511-20. Doi: 10.1006/viro.1995.1182. DOI: https://doi.org/10.1006/viro.1995.1182
Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol Mol Biol Plants. 2022;28(2):485-504. Doi: 10.1007/s12298-022-01146-y. DOI: https://doi.org/10.1007/s12298-022-01146-y
Kramer DM, Johnson G, Kiirats O, Edwards GE. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res. 2004;79(2):209. Doi: 10.1023/B:PRES.0000015391.99477.0d. DOI: https://doi.org/10.1023/B:PRES.0000015391.99477.0d
Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol. 2008;9(2):251-68. Doi: 10.1111/j.1364-3703.2007.00455.x. DOI: https://doi.org/10.1111/j.1364-3703.2007.00455.x
Muir CD. A Stomatal model of anatomical tradeoffs between gas exchange and pathogen colonization. Front Plant Sci. 2020;11:518991. Doi: 10.3389/fpls.2020.518991. DOI: https://doi.org/10.3389/fpls.2020.518991
Munir N, Hameed AA, Haq R, Naz S. Biochemical changes in cultivars of sweet oranges infected with citrus tristeza virus. Braz J Biol. 2019;79(4):742-8. Doi: 10.1590/1519-6984.193791. DOI: https://doi.org/10.1590/1519-6984.193791
Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867-80. Doi: 10.1093/oxfordjournals.pcp.a076232. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232
Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN. Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol. 2005;79(4):2549-58. Doi: 10.1128/JVI.79.4.2549-2558.2005. DOI: https://doi.org/10.1128/JVI.79.4.2549-2558.2005
Pérez-Clemente R, Montoliu A, Vives V, López-Climent M, Gómez-Cadenas A. Photosynthetic and antiox-idant responses of Mexican lime (Citrus aurantifolia) plants to Citrus tristeza virus infection. Plant Pathol. 2015;64:16-24. Doi: 10.1111/ppa.12241. DOI: https://doi.org/10.1111/ppa.12241
Pérez-Clemente RM, Montoliu A, Vives-Peris V, Arbona V, Gómez-Cadenas A. Hormonal and metabolic responses of Mexican lime plants to CTV infection. J Plant Physiol. 2019;238:40-52. Doi: 10.1016/j.jplph.2019.05.001. DOI: https://doi.org/10.1016/j.jplph.2019.05.001
Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 2009;9:28. Doi: 10.1186/1471-2229-9-28. DOI: https://doi.org/10.1186/1471-2229-9-28
Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996;110(1):125-36. Doi: 10.1104/pp.110.1.125. DOI: https://doi.org/10.1104/pp.110.1.125
Rivas F, Fornes F, Rodrigo M, Zacarías L, Agustí M. Changes in carotenoids and ABA content in Citrus leaves in response to girdling. Sci Hortic. 2011;127:482-7. Doi: 10.1016/j.scienta.2010.11.010. DOI: https://doi.org/10.1016/j.scienta.2010.11.010
Rivas F, Fornes F, Rodrigo M, Zacarías L, Agustí M. Girdling induces oxidative damage and triggers enzymatic and non-enzymatic antioxidative defences in Citrus leaves. Environ Exp Bot. 2008;64(3):256-63. Doi: 10.1016/j.envexpbot.2008.07.006. DOI: https://doi.org/10.1016/j.envexpbot.2008.07.006
Roistacher C. Graft-transmissible diseases of citrus, handbook for detection and diagnosis. Rome: FAO; 1991. 286p.
Roy A, Choudhary N, Hartung JS, Brlansky RH. The prevalence of the Citrus tristeza virus Trifoliate Resistance breaking genotype among Puerto Rican isolates. Plant Dis. 2013;97(9):1227-34. Doi: 10.1094/PDIS-01-12-0012-RE. DOI: https://doi.org/10.1094/PDIS-01-12-0012-RE
Rubio L, Arruabarrena A, Salvo M, Castells M, Bertalmío A, Hernández-Rodríguez L, Benítez-Galeano MJ, Maeso D, Colina R, Rivas F. Biological and molecular characterization of a resistance-breaking isolate of citrus tristeza virus from Uruguay and its effects on Poncirus trifoliata growth performance. Arch Virol. 2023;168(4):123. Doi: 10.1007/s00705-023-05749-y. DOI: https://doi.org/10.1007/s00705-023-05749-y
Sampol B, Bota J, Riera D, Medrano H, Flexas J. Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytol. 2003;160(2):403-12. Doi: 10.1046/j.1469-8137.2003.00882.x. DOI: https://doi.org/10.1046/j.1469-8137.2003.00882.x
Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA. The Folin–Ciocalteu assay revisited improvement of its specificity for total phenolic content determination. Anal Methods. 2013;5:5990-9. Doi: 10.1039/C3AY41125G. DOI: https://doi.org/10.1039/c3ay41125g
Scott KA, Hlela Q, Zablocki O, Read D, van Vuuren S, Pietersen G. Genotype composition of populations of grapefruit-cross-protecting citrus tristeza virus strain GFMS12 in different host plants and aphid-transmitted sub-isolates. Arch Virol. 2013;158(1):27-37. Doi: 10.1007/s00705-012-1450-4. DOI: https://doi.org/10.1007/s00705-012-1450-4
Siddique Z, Akhtar KP, Hameed A, Sarwar N, Imran-Ul-Haq, Khan SA. Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. J Plant Interact. 2014;9:702-11. Doi: 10.1080/17429145.2014.905800. DOI: https://doi.org/10.1080/17429145.2014.905800
Tatineni S, Dawson WO. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol. 2012;86(15):7850-7. Doi: 10.1128/JVI.00916-12. DOI: https://doi.org/10.1128/JVI.00916-12
Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology. 2008;376(2):297-307. Doi: 10.1016/j.virol.2007.12.038. DOI: https://doi.org/10.1016/j.virol.2007.12.038
van Kooten O, Snel JF. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res. 1990;25(3):147-50. Doi: 10.1007/BF00033156. DOI: https://doi.org/10.1007/BF00033156
van Loon LC, Rep M, Pieterse CM. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135-62. Doi: 10.1146/annurev.phyto.44.070505. DOI: https://doi.org/10.1146/annurev.phyto.44.070505.143425
Wang J, Zhou T, Cao M, Zhou Y, Li Z. First report of Citrus tristeza virus trifoliate resistance-breaking (RB) genotype in Citrus grandis in China. J Plant Pathol. 2019;101(2):451. Doi: 10.1007/s42161-018-0169-9. DOI: https://doi.org/10.1007/s42161-018-0169-9
Yokomi RK, Selvaraj V, Maheshwari Y, Saponari M, Giampetruzzi A, Chiumenti M, Hajeri S. Identification and characterization of Citrus tristeza virus isolates breaking resistance in Trifoliate Orange in California. Phytopathology. 2017;107(7):901-8. Doi: 10.1094/PHYTO-01-17-0007-R. DOI: https://doi.org/10.1094/PHYTO-01-17-0007-R
Zhao S, Li Y. Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathog. 2021;17(2):e1009242. Doi: 10.1371/journal.ppat.1009242. DOI: https://doi.org/10.1371/journal.ppat.1009242

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agrociencia Uruguay

This work is licensed under a Creative Commons Attribution 4.0 International License.
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |