Impacts of irrigation development on water quality in the San Salvador watershed (Part 2)

Implementation of scenarios in SWAT

Authors

DOI:

https://doi.org/10.31285/AGRO.27.1199

Keywords:

sustainable agriculture, water quality, supplementary irrigation, SWAT

Abstract

Intensive agricultural activities pose a significant threat to water quality as critical non-point sources of pollution. Effective mitigation strategies demand understanding the causes and processes of water pollution. This study aimed to quantify the impacts of irrigation development on water quality and assess best management practices for sustainable agriculture intensification. Employing the calibrated SWAT model for the San Salvador watershed (baseline scenario), two scenarios were implemented and evaluated: the first one depicted irrigation development from a future reservoir, and the second integrated riparian buffer zones to minimize nutrient and sediment losses. Notably the baseline scenario did not achieve nutrient water quality objectives. Results revealed that irrigation development increases nutrient yields, driving the future reservoir toward eutrophication. Implementing riparian buffer zones reduced nutrient loss, but additional measures are necessary for sustainable environmental goals at the basin scale. This research contributes with valuable insights for formulating effective management strategies to minimize nutrient pollution in water and safeguard water quality and biodiversity in the basin.

Downloads

Download data is not yet available.

References

Aprobación de medidas para que los usos de las aguas públicas aseguren el caudal Ambiental que permita la protección del ambiente y criterios de manejo ambientalmente adecuados de las obras hidráulicas. Decreto N° 368/018. Publicada D.O. 13 Nov/018 - N°30.068.

Arnold J, Kiniry J, Srinivasan R, Williams J, Haney E, Neitsch S. Water Assessment Tool, input / output documentation. Temple: Texas A&M University; 2012. 654p.

Arnold JG, Srinivasan R, Muttiah RS, Williams JR. Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc. 1998;34(1):73-89. Doi: 10.1111/j.1752-1688.1998.tb05961.x.

Arnold JG, Youssef MA, Yen H, White MJ, Sheshukov AY, Sadeghi AM, Moriasi AM, Steiner JL, Amatya D, Skaggs RW, Haney EB, Jeong J, Arabi M, Gowda PH. Hydrological processes and model representation: impact of soft data on calibration. Trans ASABE. 2015;58(6):1637-60.

Aubriot L, Chalar G, De León L, Goyenola G, Lizarralde C, Míguez B, Perdomo C, Quintans F, Rodó E, Teixeira de Mello F. Establecimiento de niveles guía de estado trófico en cuerpos de agua superficiales. Montevideo: MA; 2017. 48p.

Beltran-Peña A, Rosa L, D’Odorico P. Global food self-sufficiency in the 21st century under sustainable intensification of agriculture. Environ Res Lett. 2020;15:095004. Doi: 10.1088/1748-9326/ab9388.

BRL Ingenierie SA; SIGMAPLUS SRL. Caracterización de las cuencas del rio San Salvador, rio Yí y rio Arapey para fines de riego [Internet]. Montevideo: MGAP; 2017 [cited 2023 Dec 20]. Available from: https://bit.ly/3GUJOLs

Calvo C. Rol ecosistémico de la zona riparia en sistemas dulceacuícolas en un escenario de cambio global [doctoral’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2022. 146p.

Foley J, Ramankutty N, Brauman K, Cassidy E, Gerber J, Johnston M, Mueller N, O'Connell C, Ray D, West P, Balzer C, Bennett E, Carpenter S, Hill J, Monfreda C, Polasky S, Rockström J, Sheehan J, Siebert S, Zaks D. Solutions for a Cultivated Planet. Nature. 2011;478(7369):337-42.

Giménez L, García Petillo M. Summer crops evapotranspiration for two climatically constrating regions of Uruguay. Agrociencia. 2011;15(2):100-8. Doi: 10.31285/AGRO.15.598.

Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security: the challenge of feeding 9 billion people. Science. 2010;327(5967):812-8.

Gorgoglione A, Gregorio J, Ríos A, Alonso J, Chreties C, Fossati M. Influence of Land Use/Land Cover on Surface-Water Quality of Santa Lucía River, Uruguay. Sustainability. 2020;12(11):4692. Doi: 10.3390/su12114692.

Hansen Z, Libecap G, Lowe S. Climate variability and water infrastructure: historical experience in the Western United States. In: Libecap GD, Steckel RH, editors. The economics of climate change: adaptations past and present. Chicago: University of Chicago Press; 2011. pp. 253-80.

Hastings F, Perez-Bidegain M, Navas R, Gorgoglione A. Impacts of irrigation development on water quality in the San Salvador watershed (Part 1): assessment of current nutrient delivery and transport using SWAT. Agrocienc Urug. 2023;27(NE1):e1198. Doi: 10.31285/AGRO.27.1198.

Instituto Uruguayo de Meteorología. Clasificación climática [Internet]. Montevideo: INUMET; [cited 2023 Jul 18]. Available from: https://www.inumet.gub.uy/clima/estadisticas-climatologicas/clasificacion-climatica

Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks; 1995 Nov 27 – Dec 1; Perth, WA, Australia. Perth: IEEE; 1995. pp. 1942-8.

Merriman KR, Gitau MW, Chaubey I. A tool for estimating best management practice effectiveness in Arkansas. Appl Eng Agric. 2009;25(2):199-213.

Ministerior de Ambiente, OAN (UY). Extracción de datos [Internet]. Montevideo: MA; [cited 2023 Jul 18]. Available from: https://www.ambiente.gub.uy/iSIA_OAN/

Moriasi DN, Arnold JG, Liew MW Van, Bingner RL, Harmel RD, Veith TL. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE. 2007;50(3):885-900.

Moriasi DN, Steiner JL, Arnold JG. Sediment measurement and transport modeling: impact of riparian and filter strip buffers. J Environ Qual. 2011;40(3):807-14. Doi: 10.2134/jeq2010.0066.

Nash JE, Sutcliffe JV. River flow forecasting through conceptual models part I: a discussion of principles. J Hydrol. 1970;10(3):282-90.

Neitsch S, Arnold JG, Kiniry JR, Williams JR. Soil and water assessment tool. Temple: Texas A&M University; 2011. 618p.

Oduor BO, Campo-Bescós MÁ, Lana-Renault N, Echarri AA, Casalí J. Evaluation of the impact of changing from rainfed to irrigated agriculture in a Mediterranean Watershed in Spain. Agriculture. 2023;13(1):106. Doi: 10.3390/agriculture13010106.

Plan de Acción Santa Lucía: medidas de segunda generación. Montevideo: GNA; 2018. 95p.

Regadores Unidos del Uruguay. Cultivos regados RUU [Internet]. Messageto: Florencia Hastings. 2020 [cited 2023 Dec 19]. [1 paragraphs].

Rosa L. Adapting agriculture to climate change via sustainable irrigation: biophysical potentials and feedbacks. Environ Res Lett. 2022;17:063008. Doi: 10.1088/1748-9326/ac7408.

Rosa L, Chiarelli DD, Tu C, Rulli MC, D’Odorico P. Global unsustainable virtual water flows in agricultural trade. Environ Res Lett. 2019;14:114001. Doi: 10.1088/1748-9326/ab4bfc.

Rosa L, Rulli MC, Davis KF, Chiarelli DD, Passera C, D’Odorico P. Closing the yield gap while ensuring water sustainability. Environ Res Lett. 2018;13:104002. Doi: 10.1088/1748-9326/aadeef.

Rosas F, Sans M, Arana S. The effect of irrigation on income volatility reduction: a prospect theory approach [Internet]. Montevideo: ORT; 2018 [cited 2023 Dec 19]. 32p. Available from: https://dspace.ort.edu.uy/bitstream/handle/20.500.11968/3890/documentodeinvestigacion118.pdf?sequence=1&isAllowed=y

Salas HJ, Martino P. Metodologías simplificadas para la evaluación de la eutrofización en lagos cálidos tropicales [Internet]. Lima: OPS; 2001 [cited 2023 Dec 19]. 63p. Available from: https://iris.paho.org/handle/10665.2/55330

Schmitt RJP, Rosa L, Daily GC. Global expansion of sustainable irrigation limited by water storage. Proc Natl Acad Sci U S A. 2022;119(47):e2214291119. Doi: 10.1073/pnas.2214291119.

Schuerz C. SWATrunR: Running SWAT2012 and SWAT+ Projects in R. R package version 0.2.7 [Internet]. California: Github; 2019 [cited 2023 Aug 23]. Available from: https://github.com/chrisschuerz/SWATplusR

Tharme R. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res Appl. 2003;19(5-6):397-441. Doi: 10.1002/rra.736.

The state of food security and nutrition in the world: transforming food systems for food security, improved nutrition and affordable healthy diets for all. Rome: FAO; 2021. 240p.

Tomer MD, Sadler EJ, Lizotte RE, Bryant RB, Potter TL, Moore MT, Veith TL, Baffaut C, Locke MA, Walbridge MR. A decade of conservation effects assessment research by the USDA Agricultural Research Service: progress overview and future outlook. J Soil Water Conserv. 2014;69(5):365-73.

United States Department of Agriculture, NRC Service. Core4 conservation practices training guides: the common sense approach to natural resource conservation. Washington: USDA; 1999. 395p.

United States Environmental Protection Agency. Protecting and Restoring America's Watersheds [Internet]. Washington: US EPA; 2001 [cited 2023 Jul 18]. 56p. Available from: https://bit.ly/48y5hFO

US Environmental Protection Agency. The quality of our Nation’s waters: summary of the national water quality inventory: 1998 report to Congress. Washington: US EPA; 2000. 20p.

White MJ, Arnold JG. Development of a simplistic vegetative filter strip model for sediment and nutrient retention at the field scale. Hydrol Process. 2009;23(11):1602-16.

Downloads

Published

2024-02-06

How to Cite

1.
Hastings F, Pérez-Bidegain M, Navas R, Gorgoglione A. Impacts of irrigation development on water quality in the San Salvador watershed (Part 2): Implementation of scenarios in SWAT. Agrocienc Urug [Internet]. 2024 Feb. 6 [cited 2024 Mar. 4];27(NE1):e1199. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1199

Issue

Section

Water quality and environmental sustainability
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)