Assessing dependence between land use/land cover and water quality

A comparison at a small and a large watershed in Uruguay

Authors

DOI:

https://doi.org/10.31285/AGRO.27.1192

Keywords:

water quality, land use/land cover, unsupervised learning, feature importance

Abstract

Changes in land use/land cover (LULC) directly or indirectly affect water quality in watercourses and impoundments. Sustainable management strategies aimed to enhance ecosystem health and community well-being require an accurate water-quality evaluation. This study looks into the correlation between temporal changes in LULC, represented by selected landscape variables (land cover area and proportion, patch density, Euclidean nearest-neighbor distance, mean shape index, and Shannon index), and water quality variables (nitrate, total phosphorus, and total suspended solids) at catchment scale. To compare the watershed-size influence, this analysis was performed at two different spatial scales represented by two Uruguayan basins of different sizes, San Salvador (3,118 km2) and Del Tala (160 km2). Partial Least Squares and Random Forest unsupervised machine-learning models were employed for this analysis. By exploiting a non-model-biased method based on game theory (SHAP), the LULC characteristics were quantified and ranked based on their level of importance in the water-quality evaluation. The main outcomes of this study proved that patch density is one of the most influencing metrics in both watersheds and for both models. Agricultural land use is the most critical one at both catchments and agricultural with a forage crop land uses are the most important ones for both algorithms. Furthermore, it is possible to state that the adopted techniques are valuable tools that can provide an adequate overview of the water‐quality behavior in space and time and the correlations between water-quality variables and LULC.

Downloads

Download data is not yet available.

References

Amiri BJ, Nakane K. Modeling the linkage between river water quality and landscape metrics in the Chugoku district of Japan. Water Resour Manag. 2009;23(5):931-56.

Arbeletche P, Ernst O, Hoffman E. La agricultura en Uruguay y su evolución. In: García Préchac F, Ernst O, Arbeletche P, Bidegain MP, Pritsch C, Ferenczi A, Rivas M, editores. Intensificación agrícola: oportunidades y amenazas para un país productivo y natural. Montevideo: Universidad de la República; 2010. pp. 13-27.

Aubriot L, Delbene L, Haakonson S, Somma A, Hirsch F, Bonilla S. Evolución de la eutrofización en el Río Santa Lucía: influencia de la intensificación productiva y perspectivas. Innotec. 2017;14:7-17. Doi: 10.26461/14.04.

Breiman L. Random forests. Machine learning. 2001;45:5-32.

Bridges CC. Hierarchical Cluster Analysis. Psychol Rep. 1966;18(3):851-4. Doi: 10.2466/pr0.1966.18.3.851.

Bu H, Meng W, Zhang Y, Wan J. Relationships between land use patterns and water quality in the Taizi River basin, China. Ecol Indic. 2014;41:187-97.

Caracterización de las cuencas del río San Salvador, río Yí Y río Arapey para fines de riego. Montevideo: MGAP; 2017. 198p.

CARU. Digesto sobre el uso y aprovechamiento del Río Uruguay [Internet]. Paysandú: CARU; 2019 [cited 2023 Oct 05]. 140p. Available from: https://bit.ly/3RRliBl

Centurion V, Fabre A, Kok P, Badano L, Neighbur N, Gelos M, Rodo E, Hoffmeister M, De Leon L. Evolución de la calidad de agua en la cuenca del río San Salvador: periodo 2014–2019. Montevideo: MVOTMV; 2020. 76p.

Ciganda V, Lizarralde C, Eguren G. Establecimiento de engorde a corral bovino o feedlots: cuantificación de su impacto sobre los recursos suelo y agua. Revista INIA. 2015;(41):39-44.

Cross T, Sathaye K, Darnell K, Niederhut D, Crifasi K. Predicting water production in the Williston basin using a machine learning model. In: Unconventional Resources Technology Conference, Virtual, 20–22 July 2020. [place unknown: publisher unknown]; 2020. pp. 3492–503. Doi: 10.15530/urtec-2020-2756.

De la Fuente E, Suárez SA. Problemas ambientales asociados a la actividad humana: la agricultura. Ecol Austral. 2008;18:239-52.

ESA. Sentinel-2 Mission Guide [Internet]. [place unknown]: ESA; [date unknown; cited 2023 Oct 05]. Available from: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2

Fisher B, Turner RK, Morling P. Defining and classifying ecosystem services for decision making. Ecol Econ. 2009;68:643-53.

Frazier A. Landscape Metrics. In: Wilson JP, editor.The geographic information science & technology: body of knowledge. 2nd ed. [place unknown]: University Consortium for Geographic Information Science; 2019. Doi: 10.22224/gistbok/2019.2.3.

García AR, Fleite SN, Ciapparelli I, Vázquez Pugliese D, Weigandt C, Fabrizio de Iorio A. Observaciones, desafíos y oportunidades en el manejo de efluentes de feedlot en la provinicia de Buenos Aires, Argentina. Ecol Austral. 2015;25(3):255-62.

Ghazaryan G, Dubovyk O, Löw F, Lavreniuk M, Kolotii A, Schellberg J, Kussul N. A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics. Eur J Remote Sens. 2018;51(1):511-24.

Google. Google Earth Engine [Internet]. Mountain View: Google; [date unknown; cited 2023 Oct 05]. Available from: https://earthengine.google.com/

Google Colab [Internet]. Mountain View: Google; 2023 [cited 2023 Oct 05]. Available from: https://colab.research.google.com/

Gorgoglione A, Gregorio J, Ríos A, Alonso J, Chreties C, Fossati M. Influence of land use/land cover on surface-water quality of Santa Lucía River, Uruguay. Sustainability. 2020;12(11):4692. Doi: 10.3390/su12114692.

Hammer Ø, Harper DA, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron [Internet]. 2001 [cited 2023 Oct 05];4(1):9p. Available from: https://palaeo-electronica.org/2001_1/past/past.pdf

Hesselbarth MHK, Sciaini M, With KA, Wiegand K, Nowosad J. Landscape metrics: an open‐source R tool to calculate landscape metrics. Ecography. 2019;42(10):1648-57.

Horning N. Land cover classification methods [Internet]. Version 1.0. New York: American Museum of Natural History;2004 [cited 2023 Oct 05]. Available from: https://www.amnh.org/content/download/74344/1391366/file/land-cover-classification-methods.pdf

Huang C, Kim S, Song K, Townshed JRG, Davis P, Altstatt A, Rodas O, Yanosky A, Clay R, Tucker CJ, Musinsky J. Assessment of Paraguay’s forest cover change using landsat observations. Glob Planet Change. 2009;67:1-12. Doi: 10.1016/j.gloplacha.2008.12.009.

IDEUY: Infraestructura de Datos Espaciales [Internet]. Montevideo: Uruguay Presidencia; [date unknown; cited 2023 Oct 05]. Available from: https://visualizador.ide.uy/ideuy/core/load_public_project/ideuy/

Jain AK. Data clustering: 50 years beyond K-means. Pattern Recognit Lett. 2010;31(8):651-66.

Jiang Z, Huete A, Didan K, Miura T. Development of a two-band enhanced vegetation index without a blue band. Remote Sens Environ. 2008;112(10):3833-45.

Kearns FR, Kelly NM, Carter JL, Resh VH. A method for the use of landscape metrics in freshwater research and management. Landsc Ecol. 2005;20:113-25.

Lee SW, Hwang SJ, Lee SB, Hwang HS, Sung HC. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landsc Urban Plan. 2009;92(2):80-9.

Lintern A, Webb JA, Ryu D, Liu S, Bende-Michl U, Waters D, Leahy P, Wilson P, Western AW. Key factors influencing differences in stream water quality across space. WIREs Water. 2018;5:e1260. Doi: 10.1002/wat2.1260.

Liu A, Duodu GO, Goonetilleke A, Ayoko GA. Influence of land use configurations on river sediment pollution. Environ Pollut. 2017;229:639-46.

Lundberg SM, Lee SI. A unified approach to interpreting model predictions. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, Garnett R, editors. Advances in Neural Information Processing Systems 30. New York: NIPS; 2017. pp. 4765-74.

Maaten L van der, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579-605.

McGarigal K, Marks BJ. FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. Portland: USDA; 1995. 122p.

Melgar R, Vitti G, De Melo V. Soja en Latinoamérica: fertilizando para altos rendimientos. IIP Boletín. 2011;20:81p.

Ministerio de Ambiente, OAN (UY). Observatorio Ambiental Nacional [Internet]. Montevideo: MA; [date unknown; cited 2023 Oct 05]. Available from: https://www.ambiente.gub.uy/oan/

Ministerio de Ganadería, Agricultura y Pesca (UY). Mapa integrado de cobertura/uso del suelo del Uruguay año 2018 [Internet]. Montevideo: MGAP; 2019 [cited 2023 Oct 05]. Available from: https://bit.ly/3rDrVN0

Ministerio de Ganadería, Agricultura y Pesca, DGRN (UY). Actualización de cobertura y uso del suelo del Uruguay al año 2020/2021 [Internet].Montevideo: MGAP; 2021[cited 2023 Oct 05]. Available from: https://bit.ly/45z8kM9

Mon R, Irurtia C, Botta G, Pozzolo O, Bellora F, Rivero D, Bomben M. Effects of supplementary irrigation on chemical and physical soil properties in the rolling pampa region of Argentina. Cienc Investig Agrar. 2007;34(3):187-94.

Monteiro MIC, Ferreira FN, De Oliveira NMM, Avila AK. Simplified version of the sodium salicylate method for analysis of nitrate in drinking waters. Anal Chim Acta. 2003;477(1):125-9.

Paruelo JM, Guerschman JP, Piñeiro G, Jobbágy EG, Verón SR, Baldi G, Baeza S. Cambios en el uso de la tierra en Argentina y Uruguay: marcos conceptuales para su análisis. Agrociencia. 2006;10(2):47-61. Doi: 10.31285/AGRO.10.929.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Plan de monitoreo río San Salvador:informe de actividades y presentación de resultados: 2015. Montevideo: MVOTMA; 2016. 67p.

Russo C, Castro A, Gioia A, Iacobellis V, Gorgoglione A. A Stormwater management framework for predicting first flush intensity and quantifying its influential factors. Water Resour Manag. 2023;37:1437-59.

Russo C, Castro A, Gioia A, Iacobellis V, Gorgoglione A. Improving the sediment and nutrient first-flush prediction and ranking its influencing factors: an integrated machine-learning framework. J Hydrol. 2023;616:128842. Doi: 10.1016/j.jhydrol.2022.128842.

Shapley LS. A value for n-person games. In: Kuhn H, Tucker A, editors. Contributions to the Theory of Games. Vol 2. Princeton: Princeton University Press; 1953. pp. 307-17.

Sharma A, Mishra PK. State-of-the-art in performance metrics and future directions for data science algorithms. J Sci Res. 2020;64(2):221-38. Doi: 10.37398/JSR.2020.640232.

Shi ZH, Ai L, Li X, Huang XD, Wu GL, Liao W. Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds. J Hydrol. 2013;498:165-76.

Standard methods: for examination of water and wastewater. 15th ed. Washington: APHA; 1995. 1134p.

Tomic O, Graff T, Liland KH, Naes T. Hoggorm: a python library for explorative multivariate statistics. J Open Source Softw. 2019;4(39):980. Doi: 10.21105/joss.00980.

Uuemaa E, Roosaare J, Mander Ü. Landscape metrics as indicators of river water quality at catchment scale. Hydrol Res. 2007;38(2):125-38.

Uuemaa E, Roosaare J, Mander Ü. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol Indic. 2005;5(4):350-69.

Van Opstal NV, Caviglia OP, Melchiori RJM. Water and solar radiation productivity of double-crops in a humid temperate area. Aust J Crop Sci. 2011;5(13):1760-6.

Vilaseca F, Castro A, Chreties C, Gorgoglione A. Daily rainfall-runoff modeling at watershed scale: a comparison between physically-based and data-driven models. In: Gervasi O, Murgante B, Misra S, Garau C, Blečić I, Taniar D, Apduhan BO, Rocha AMAC, Tarantino E, Torre CM, editors. Computational Science and Its Applications: ICCSA 2021. Cham: Springer; 2021. pp. 18-33.

Wang J, Bao W, Gao Q, Si W, Sun Y. Coupling the Xinanjiang model and wavelet-based random forests method for improved daily streamflow simulation. J Hydroinformatics. 2021;23:589-604.

Withers PJ, Neal C, Jarvie HP, Doody DG. Agriculture and eutrophication: where do we go from here? Sustainability. 2014;6:5853-75. Doi: 10.3390/su6095853.

Xu S, Li SL, Zhong J, Li C. Spatial scale effects of the variable relationships between landscape pattern and water quality: example from an agricultural karst river basin, Southwestern China. Water Resour Manag. 2020;300:106999. Doi: 10.1016/j.agee.2020.106999.

Zhong S, Zhang K, Wang D, Zhang H. Shedding light on ‘‘Black Box’’ machinelearning models for predicting the reactivity of HO radicals toward organic compounds. Chem Eng J. 2021;405:126627. Doi: 10.1016/j.cej.2020.126627.

Downloads

Published

2024-02-06

How to Cite

1.
Cal A, Pastorini M, Tiscornia G, Rivas-Rivera N, Gorgoglione A. Assessing dependence between land use/land cover and water quality: A comparison at a small and a large watershed in Uruguay. Agrocienc Urug [Internet]. 2024 Feb. 6 [cited 2024 Jul. 15];27(NE1):e1192. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1192

Issue

Section

Water quality and environmental sustainability
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)