Utilización del grano entero de avena como fuente de fibra en raciones para terneros

Autores/as

DOI:

https://doi.org/10.31285/AGRO.25.372

Palabras clave:

vacuno, crecimiento, fibra efectiva, digestión, eficiencia de conversión

Resumen

Se realizaron dos experimentos con el objetivo de estudiar el valor del grano entero de avena (GEA) como fuente de fibra físicamente efectiva (peFDN) en raciones para terneros. En el experimento 1, 24 terneros Hereford (177±18 kg) fueron sorteados a ocho grupos y estos a una de cuatro raciones (79 % concentrado), definidas por niveles crecientes de sustitución de heno de moha (HM) por GEA: 0:21, 7:14, 14:7, 21:0 % base materia seca (MS) GEA:HM, respectivamente. Niveles crecientes de GEA resultaron en una respuesta cuadrática de peFDN (P= 0,04) ubicándose por encima del 15 %. El consumo aumentó en forma cuadrática (P= 0,03) y la digestibilidad linealmente (P= 0,03). Como resultado, a mayor GEA la eficiencia de conversión tendió a mejorar (P= 0,08). En el Experimento 2, cuatro novillos provistos de cánula ruminal se asignaron en un diseño crossover a dos raciones (65 % concentrado), difiriendo en la fuente de peFDN: 35 % hm o 35 % GEA, con el objetivo de estudiar sus características fermentativas. La sustitución de HM por GEA redujo el pH medio del rumen (5,9 vs. 6,3, P <0,01) variando entre 6,1 y 5,8, permaneciendo las 24 h por debajo de los valores registrados para hm. No se afectó la fracción de la ms potencialmente degradable en rumen, pero aumentó la tasa de fermentación para GEA (35,0 vs. 9,0 %/h; P= 0,02), y la degradabilidad efectiva (58,3 vs. 65,4 %; P= 0,048). Los resultados de ambos experimentos sugieren que es viable el uso del GEA como fuente de peFDN en raciones concentradas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

AFRC. Energy and Protein requirements of ruminants. Cambridge: CAB International; 1993. 159p.

Allen MS. Drives and limits to feed intake in ruminants. Anim Prod Sci. 2014;54:1513-24. DOI: https://doi.org/10.1071/AN14478

Arelovich HM, Abney CS, Vizcarra JA, Galyean ML. Effects of dietary neutral detergent fiber on intakes of dry matter and net energy by dairy and beef cattle: analysis of published data. Prof Anim Sci. 2008;24:375-83. DOI: https://doi.org/10.15232/S1080-7446(15)30882-2

Beauchemin KA, McAllister TA, Dong Y, Farr BI, Cheng KJ. Effects of mastication on digestion of whole cereal grains by cattle. J Anim Sci. 1994;72:236-46. DOI: https://doi.org/10.2527/1994.721236x

Beauchemin KA, Yang WZ. Effects of Physically Effective Fiber on Intake, Chewing Activity, and Ruminal Acidosis for Dairy Cows Fed Diets Based on Corn Silage. J Dairy Sci. 2005;88:2117-29. DOI: https://doi.org/10.3168/jds.S0022-0302(05)72888-5

Beretta V, Simeone A, Elizalde JC, Franco J, Bentancur O, Ferrés A, Aycaguer S, Iriñiz J, Martínez V. Alternative fiber sources for steers and calves fed high grain feedlot diets. Anim Prod Sci. 2010;50:410-3. DOI: https://doi.org/10.1071/AN09173

Beretta V, Simeone A, Franco J, Casaretto F, Mondelli S, Valdez G. Using self-feeders with high concentrate diets for finishing beef cattle. In: Book of Abstracts of 69th Meeting of the European Federation of Animal Science. Wageningen: Wageningen Academic Publishers; 2018. p. 486.

Fox DG, Tedeschi LO. Application of physically effective fiber in diets for feedlot cattle. In: Proceedings of Plains Nutrition Conference; 2002 Apr 25-26; San Antonio, Texas [Internet]. Texas: Texas A&M Research and Extension Center; 2002 [cited 2020 Sep 25]. p. 67-81. Available from: https://bit.ly/2EBQ7qK.

González LA, Manteca X, Calsamiglia S, Schwartzkopf-Genswein KS, Ferret A. Ruminal acidosis in feedlot cattle: interplay between feed ingredients, rumen function and feeding behavior. Anim Feed Sci Tech. 2012;172:66-79. DOI: https://doi.org/10.1016/j.anifeedsci.2011.12.009

Guidelines for uniform beef improvement programs [Internet]. 9th ed. Prairie (MS): Beef Improvement Federation; 2016 [cited 2020 Sep 23]. 185p. Available from: https://bit.ly/3hTCall.

Heinrichs J, Kononoff P. Evaluating particle size of forages and TMRs using the New Penn State Forage Particle Separator [Internet]. Pennsylvania: Pennsylvania State University; 2002 [cited 2020 Sep 25]. 14p. (DAS; 02- 42). Available from: https://bit.ly/340aMxm.

Herrera-Saldana RE, Huber JT, Poore MH. Dry Matter, Crude Protein, and Starch Degradability of Five Cereal Grains. J Dairy Sci. 1990;73(9):2386-93. DOI: https://doi.org/10.3168/jds.S0022-0302(90)78922-9

Huntington GB, Harmon DL, Richards CJ. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J Anim Sci. 2006;84(E. Suppl.):E14-24. DOI: https://doi.org/10.2527/2006.8413_supplE14x

Latimer GW, editor. Official methods of analysis. 19th ed. Gaithersburg (MD): AOAC; 2012. 2v.

McAllister TA, Gibb DJ, Beauchemin KA, Wang Y. Starch type, structure and ruminal digestion. In: Cattle Grain Processing Symposium; 2006 Nov 15-17; Tulsa, Oklahoma, United States [Internet]. Stillwater: University of Oklahoma; 2007 [cited 2020 Sep 25]. p. 30-41. Avalilable from: https://bit.ly/33XITpI.

Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci. 1997;80:1463-81. DOI: https://doi.org/10.3168/jds.S0022-0302(97)76075-2

Mertens DR. Measuring fiber and its effectiveness in ruminant diets. In: Proceedings of Plains Nutrition Conference; 2002 Apr 25-26; San Antonio, Texas [Internet]. Texas: Texas A&M Research and Extension Center; 2002 [cited 2020 Sep 25]. p. 40-66. Available from: https://bit.ly/368PbWi.

Miner JL. Recent Advances in the central control of intake in ruminants. J Anim Sci. 1992;70:1283-9. DOI: https://doi.org/10.2527/1992.7041283x

Morgan CA, Campling RC. Digestibility of whole barley and oat grains by cattle of different ages. Anim Sci. 1978;27(3):323-9. DOI: https://doi.org/10.1017/S0003356100036217

National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle. 8th rev ed. Washington: The National Academies Press; 2016. 494p.

National Research Council. Nutrient requirements of beef cattle. 7th ed. Washington: National Academic Press; 1996. 248p.

Ørskov ER, Flatt WP, Moe PW. Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. J Dairy Sci. 1968;51:1429-35. DOI: https://doi.org/10.3168/jds.S0022-0302(68)87208-X

Ørskov ER, Hovell FD, Mould F. The use of the nylon bag technique for evaluation of feedstuffs. Trop Anim Prod. 1980;5(3):195-213.

Ørskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 1979;92:499-503. DOI: https://doi.org/10.1017/S0021859600063048

Owens FN, Secrist DS, Hill WJ, Gill DR. The Effect of Grain Source and Grain Processing on Performance of Feedlot Cattle: a Review. J Anim Sci. 1997;75:868-79. DOI: https://doi.org/10.2527/1997.753868x

Owens FN, Soderlund S. Ruminal and post ruminal starch digestion by cattle. In: Cattle Grain Processing Symposium; 2006 Nov 15-17; Tulsa, Oklahoma, United States [Internet]. Stillwater: University of Oklahoma; 2007 [cited 2020 Sep 25]. p. 116-28. Avalilable from: https://bit.ly/33XITpI.

Owens FN, Zinn RA, Kim YK. Limits to starch digestion in the ruminant small intestine. J Anim Sci. 1986;63:1634-48. DOI: https://doi.org/10.2527/jas1986.6351634x

Pacheco RDL, Cruz GD. Acidosis in cattle. In: Puniya AK, Singh R, Kamra DN, editors. Rumen Microbiology: from evolution to revolution. New Delhi: Springer; 2015. p. 315-27. DOI: https://doi.org/10.1007/978-81-322-2401-3_21

Parra V, Rifle SL, Elizalde JC. Estrategias de inclusión del corral en los sistemas ganaderos de la Argentina. Balcarce: the authors; 2006. 180p.

Pordomingo AJ, Jonas O, Adra M, Juan NA, Azcárate MP. Evaluación de dietas basadas en grano entero, sin fibra larga, para engorde de bovinos a corral. Rev investig agropecu. 2002;31(1):1-23.

Schwartzkopf-Genswein KS, Beauchemin KA, Gibb DJ, Crews DH, Hickman DD, Streeter M, McAllister TA. Effect of bunk management on feeding behavior, ruminal acidosis and performance of feedlot cattle: a review. J Anim Sci. 2003;81(E. Suppl. 2):E149-58.

Simeone A, Beretta V. Evaluation of a self-feeding system with a total mixed ration without long fiber to lot-fed beef calves. Agrociencia Uruguay. 2018;22(2):1-9.

Simeone A, Beretta V, Elizalde JC. Encierre de terneros o sistema ADT. In: Simeone A, Beretta V, editors. Jornada Anual de la Unidad de Producción Intensiva de Carne: una década de investigación para una ganadería más eficiente. Paysandú: Facultad de Agronomía; 2008. p. 38-41.

Simeone A, Beretta V, Elizalde JC, Franco J, Viera G. Effect of removing long fibre from beef cattle feedlot diets. In: Book of abstracts for the 10th Word Conference on animal Production. Netherlands: Wageningen Academic Publishers; 2008. p. 130. DOI: https://doi.org/10.3920/9789086865789_261

Stock R, Britton R. G91-1047 Acidosis. In: Historical Materials from University of Nebraska-Lincoln Extension [Internet]. 1991 [cited 2020 Sep 25]. 8p. Available from: https://bit.ly/2RWeDG7.

Tejada de Hernández I. Manual de laboratorio para análisis de ingredientes utilizados en la alimentación animal. México: Instituto Nacional de Investigaciones Pecuarias; 1983. 387p.

Thonney ML, Hogue DE. Formulation of ruminant diets using by-product ingredients on the basis of fermentable NDF and nonstructural carbohydrate. In: Cattle Grain Processing Symposium; 2006 Nov 15-17; Tulsa, Oklahoma, United States [Internet]. Stillwater: University of Oklahoma; 2007 [cited 2020 Sep 25]. p. 205-13. Avalilable from: https://bit.ly/33XITpI.

Trujillo AI, Bruni M, Chilibroste P. Nutrient content and nutrient availability of sorghum wet distiller’s grain in comparison with the parental grain for ruminants. J Sci Food Agric [Internet]. 2016 [cited 2020 Sep 25];97(8):2353-7. Available from: https://bit.ly/342kj75. DOI: https://doi.org/10.1002/jsfa.8046

Van Keulen J, Young BA. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci. 1977;44:282-7. DOI: https://doi.org/10.2527/jas1977.442282x

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-97. DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Vasconcelos JT, Galyean ML. Technical Note: do dietary net energy values calculated from performance data offer increased sensitivity for detecting treatment differences? J Anim Sci. 2008;86:2756–60. DOI: https://doi.org/10.2527/jas.2008-1057

Zinn RA. Influence of Processing on the Feeding Value of Oats for Feedlot Cattle. J Anim Sci. 1993;71:2303-9. DOI: https://doi.org/10.2527/1993.7192303x

Publicado

2021-01-13

Cómo citar

1.
Beretta V, Simeone A, Bentancur O, Pancini S, Banchero N, García E, et al. Utilización del grano entero de avena como fuente de fibra en raciones para terneros. Agrocienc Urug [Internet]. 13 de enero de 2021 [citado 11 de mayo de 2024];25(1):e372. Disponible en: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/372

Número

Sección

Producción animal y pasturas
QR Code

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Artículos más leídos del mismo autor/a

1 2 3 > >>