Performance evaluation of Uruguayan dairy farming systems

Authors

DOI:

https://doi.org/10.31285/AGRO.28.1209

Keywords:

typology, k-mean cluster analysis, economics results, competitiveness, intensification

Abstract

In the last 20 years, the Uruguayan dairy sector has intensified and concentrated on higher cow productivity, maintaining the herd, smaller land, and fewer farms. The research aims are to identify, describe, and evaluate the economic performance of different types of dairy farms. A sample of 284 farms from the National Dairy Farm Survey 2019 was used (representing 2,021 dairies); using k-means Cluster analysis with the variables: cow productivity, stocking rate, land productivity, concentrate, roughage, and grass intake (per hectare). We identified six farm types, three with high participation of grass in the cows’ diets (HG, 60% or more of dry matter intake), and the other three focused on supplementation (HS); with three intensification levels (1-low, 2-intermediate and 3-high productivity per ha). For the 2018/19 season three types of farms presented the best economic performance (HS-3, HG-3, and HG-2), including those with the highest stocking rate and grass intake per hectare, and more than USD 225 Economic Farm Surplus (EFS) per hectare with the lower unitary cost. Other two types exhibited intermediate economic performance (HS-2 and HG-1) with EFS close to zero and unitary cost similar to price. And one type (HS-1) displayed the worst economic performance, with negative indicators and the largest number of farms with very low productivity.

Downloads

Download data is not yet available.

References

Artagaveytia J, Baraibar M, Pedemonte A. Indicadores de precios y costos de producción primaria de leche [Internet]. Montevideo: INALE; 2017 [cited 2024 Aug 13]. 13p. Available from: https://www.inale.org/wp-content/uploads/2022/11/Apendice-metodologico-del-Indice-base-mar_2014_.pdf

Durán H. Cambios tecnológicos e intensificación en los sistemas pastoriles de producción de leche en Uruguay. In: Resultados experimentales en lechería. Montevideo: INIA; 2004. p. 115-22.

Fariña S, Chilibroste P. Opportunities and challenges for the growth of milk production from pasture: the case of systems in Uruguay. Agric Syst. 2019;176:102631. Doi: 10.1016/j.agsy.2019.05.001. DOI: https://doi.org/10.1016/j.agsy.2019.05.001

Ferris A, Malcom B. Sense and Nonsense in Dairy Farm Management Economic Analysis. Agribusiness Perspectives Papers [Internet]. 1999 [cited 2024 Aug 13];Paper 31. Available from: https://www.agrifood.info/perspectives/1999/Ferris.html

García F, Pérez G. Farm management systems: technical efficiencies differences and technology gap of Uruguayan’s dairy farms. Estud Econom. 2019;36(72):91-115.

Hanrahan L, McHugh N, Hennessy T, Moran B, Kearney R, Wallace M, Shalloo L. Factors associated with profitability in pasture-based systems of milk production. J Dairy Sci. 2018;101(6):5474-85. Doi: 10.3168/jds.2017-13223. DOI: https://doi.org/10.3168/jds.2017-13223

Hemme T. IFCN Dairy Report 2023. Kiel: IFCN; 2023. 224p.

Hennessy D, Delaby L, Van del Pol A, Shalloo L. Possibilities and constraints for grazing in high output dairy systems. In: Proceedings of the 18th Symposium of the European Grassland Federation Wageningen, the Netherlands 15-17 June 2015 [Internet]. Wageningen: Wageningen Academic Publishers; 2015 [cited 2024 Aug 13]. p. 151-62. Available from: https://edepot.wur.nl/405342

INALE. Encuesta lechera 2019: resultados definitivos [Internet]. Montevideo: INALE; 2021 [cited 2024 Aug 13]. Available from: https://www.inale.org/estadisticas/encuesta-lechera-2019-resultados-definitivos/

INALE. Poder de Compra de la leche [Internet]. Montevideo: INALE; 2014 [cited 2024 Aug 13]. Available from: https://www.inale.org/estadisticas/poder-de-compra-de-la-leche/

INALE; Ministerio de Ganadería, Agricultura y Pesca (UY). Metodología Encuesta Lechera 2019 [Internet]. Montevideo: INALE; 2021 [cited 2024 Aug 13]; 9p. Available from: https://www.inale.org/estadisticas/metodologia-encuesta-lechera-2019/

Instituto Interamericano de Cooperación para la Agricultura. Evaluación de los impactos económicos, sociales y ambientales de la inversión en investigación realizada por el Instituto Nacional de Investigación Agropecuaria (INIA) en el período 1989-2009. Montevideo: IICA; 2011. 41p.

International Dairy Federation. The World Dairy Situation Report 2022. Brussels: IDF; 2022. 243p. Doi: 10.56169/GNST6641. DOI: https://doi.org/10.56169/GNST6641

Marcano L, Fermín W. Comparación de métodos de detección de datos anómalos multivariantes mediante un estudio de simulación. Saber [Internet]. 2013 [cited 2024 Aug 13];25(2):192-201. Available from: https://ve.scielo.org/pdf/saber/v25n2/art09.pdf

Mieres J. Guía de alimentación de rumiantes. Montevideo: INIA; 2004. 84p.

Ministerio de Ganadería, Agricultura y Pesca (UY). Definición del Productor Familiar Agropecuario. Resolución N° 1.013/016 [Internet]. 2016 [cited 2024 Aug 13]. Available from: https://bit.ly/4dmo3CD

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Estadísticas del sector lácteo 2020 [Internet]. Montevideo: MGAP; 2021 [cited 2024 Aug 13]. 29p. Available from: https://bit.ly/46I2n1i

Morgan-Davies C, Waterhouse T, Wilson R. Characterization of farms' responses to policy reforms in Scottish hill farming areas. Small Rumin Res. 2012;102(2-3):96-107. Doi: 10.1016/j.smallrumres.2011.07.013. DOI: https://doi.org/10.1016/j.smallrumres.2011.07.013

Muñóz J, Amón I. Técnicas para detección de outliers multivariantes. Rev Telec Inform [Internet]. 2013 [cited 2024 Aug 13]; 3(5):11-24. Available from: http://hdl.handle.net/20.500.11912/6582

National Research Council. Nutrient requirements of dairy cattle. Washington: National Academy; 2001. 381p.

O'Rourke E, Kramm N, Chisholm N. The influence of farming styles on the management of Iveragh uplands, southwest Ireland. Land Use Policy. 2012;29(4):805-16. Doi: 10.1016/j.landusepol.2011.12.008. DOI: https://doi.org/10.1016/j.landusepol.2011.12.008

Ortega G, Berberian N, Chilibroste P. The effects of stocking rate, residual sward height, and forage supplementation on forage production, feeding strategies, and productivity of milking dairy cows. Front Anim Sci. 2024;5:1319150. Doi: 10.3389/fanim.2024.1319150. DOI: https://doi.org/10.3389/fanim.2024.1319150

Pedemonte A, Baraibar M. Situación y perspectivas de la lechería uruguaya: período enero – diciembre 2021 [Internet]. Montevideo: INALE; 2022 [cited 2024 Aug 13]. 47p. Available from: https://www.inale.org/wp-content/uploads/2022/05/Situacionyperspectivasversionfinal.pdf

Pedemonte A, Baraibar M. Situación y perspectivas de la lechería uruguaya: período enero – diciembre 2019 [Internet]. Montevideo: INALE; 2020 [cited 2024 Aug 13]. 41p. Available from: https://www.inale.org/wp-content/uploads/2020/06/Situaci%C3%B3n-y-Perspectivas-lecher%C3%ADa-uruguaya-2019_comp.pdf

Piñeiro D, Chiappe M, Graña F. La gestión en los establecimientos lecheros: una tipología de los productores según su disposición al uso de los registros físicos y económicos. Agroc Urug. 1998;2(1):125-33. Doi: 10.31285/AGRO.02.1008. DOI: https://doi.org/10.31285/AGRO.02.1008

Shoemaker D, Eastridge M, Weiss B, Harstchuh J, Zoller C, Lawandowski R, Bruynis C. 15 Measures of Dairy Farm Competitiveness [Internet]. Columbus: Ohio State University; 2019 [cited 2024 Aug 13]. 67p. Available from: https://bit.ly/4fM1AjY

Downloads

Published

2024-09-18

How to Cite

1.
Pedemonte A, García Suárez F, Artagaveytia J, Giudice G, Chilibroste P. Performance evaluation of Uruguayan dairy farming systems. Agrocienc Urug [Internet]. 2024 Sep. 18 [cited 2025 Oct. 16];28(NE1):e1209. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1209

Issue

Section

Article
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)

1 2 > >>