Produtividade da água no milho, com diferentes níveis de irrigação deficitária, em clima úmido

Autores

DOI:

https://doi.org/10.31285/AGRO.25.390

Palavras-chave:

clima temperado, eficiência uso de água, irrigação deficitária, zea mays

Resumo

Em regiões climáticas temperadas e úmidas, como o Uruguai, a irrigação estabiliza e aumenta a produtividade nas culturas de verão, suplementando as chuvas. A irrigação sob demanda gera maior consumo de água, afeta a sustentabilidade dos sistemas de produção devido ao uso ineficiente dos recursos e é ambientalmente negativa (uso excessivo de água doce e energia para sua extração). É necessário avaliar alternativas de irrigação deficitária que aumentem a produtividade da água utilizada na irrigação. Para isso, três lâminas de irrigação máximas foram avaliadas: (T2) 3 mm dia-1, (T3) 6 mm dia-1, (T4) 9 mm dia-1 e (T1) controle sem irrigação, (apenas água da chuva), na produção de milho, para definir estratégias de irrigação mais eficientes. Os resultados indicam que há uma resposta a diferentes níveis de déficit de irrigação. Quando as chuvas eram superiores à média, sua má distribuição durante o ciclo da cultura gerava déficit hídrico em momentos específicos, afetando a produtividade. T1 e T2 não cobriram a ETc durante o período crítico e enchimento de grãos, causando menores rendimentos. T3 e T4 deram rendimentos mais elevados e na média de três anos foram significativamente diferentes. Nem sempre o T3 cobriu a ETc, mas a reserva de solo e a chuva contribuíram para cobri-la, economizando quase 20% da água de irrigação em relação ao T4. No entanto, os indicadores de produtividade da água (EUA, EUAR) mostram que o T4 é a melhor estratégia de irrigação, embora faça menos uso da chuva e da água do solo.

Downloads

Não há dados estatísticos.

Referências

Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO; 1998. 322p. (FAO Irrigation and Drainage; Paper Nº 56).

Cabré MF, Soloman S, Núñez M. Regional climate change scenarios over southern South America for future climate (2080-2099) using the MM5 Mode: mean, interannual variability and uncertainties. Atmósfera. 2016;29(1):35-60. DOI: https://doi.org/10.20937/ATM.2016.29.01.04

Cardellino G, Baethgen WE. Análisis de viabilidad de sistemas de riego para maíz: estudio de casos y evaluación de estrategias. In: Tecnología de producción de cultivos y pasturas. Montevideo: INIA; 2000. p. 47-55.

Cassman KG, Dobermann AR, Walters DT, Yang H. Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality. Annu Rev Env Resour. 2003;28:315-58. DOI: https://doi.org/10.1146/annurev.energy.28.040202.122858

Comas LH, Trout TJ, DeJonge KC, Zhang H, Gleason SM. Water productivity under strategic growth stage-based deficit irrigation in maize. Agric Water Manag. 2019;212:433-40. DOI: https://doi.org/10.1016/j.agwat.2018.07.015

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat [Internet]. Version 2011. Córdoba: Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias; 2011 [cited 2020 Dec 22]. Available from: https://bit.ly/3dDvIyu.

Djaman K, Irmak S, Rathje WR, Martin DL, Eisenhauer DE. Maize evapotranspiration, yield production functions, biomass, grain yield, harvest index, and yield response factors under full and limited irrigation. Trans ASABE. 2013;56(2):273-93. DOI: https://doi.org/10.13031/2013.42676

Doorembos J, Kassam AH. Yield response to water. Rome: FAO; 1979. 193p. (FAO Irrigation and Drainage; Paper 33).

Etter A. Consideraciones acerca de la agricultura sostenible. Ambient desarro. 1993;2(3-4):39-59.

Farre I, Faci JM. Deficit irrigation in maize for reducing agricultural water use in Mediterranean environment. Agric Water Manag. 2009;83:383-94. DOI: https://doi.org/10.1016/j.agwat.2008.07.002

Fereres E, Soriano MA. Deficit irrigation for reducing agricultural water use. J Exp Bot. 2007;58(2):147-59. DOI: https://doi.org/10.1093/jxb/erl165

Geerts S, Raes D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric Water Manag. 2009;96:1275-84. DOI: https://doi.org/10.1016/j.agwat.2009.04.009

Gheysari M, Sadeghi SH, Loescher HW, Amiri S, Zareian MJ, Majidi MM, Asgarinia P, Payero JO. Comparison of deficit irrigation management strategies on root, plant growth and biomass productivity of silage maize. Agric Water Manag. 2017;182:126-38. DOI: https://doi.org/10.1016/j.agwat.2016.12.014

González F, Herrera J, López T, Cid G. Productividad del agua en algunos cultivos agrícolas en Cuba. Rev Cie Téc Agr [Internet]. 2014 [cited 2020 Dec 22];23(4):21-7. Available from: http://bit.ly/3mIfOWk.

Howell TA. Enhancing Water Use Efficiency in Irrigated Agriculture. Agron J. 2001;93:281-9. DOI: https://doi.org/10.2134/agronj2001.932281x

Irmak S, Sharma V. Large-scale and long-term trends and magnitudes in irrigated and rainfed maize and soybean water productivity: grain yield and evapotranspiration frequency, crop water use efficiency, and production functions. Trans ASABE. 2015;58(1):103-20. DOI: https://doi.org/10.13031/trans.58.10784

Kang S, Hu X, Pan Y, Shi P. Soil water distribution, uniformity and water use efficiency under alternate furrow irrigation in arid areas. Irrig Sci. 2000;19:181-90. DOI: https://doi.org/10.1007/s002710000019

Keating A, Herrero P, Carberry JS, Gardner J, Cole MB. Food wedges: framing the global food demand and supply challenge towards 2050. Glob Food Secur. 2014;3(3-4):125-32. DOI: https://doi.org/10.1016/j.gfs.2014.08.004

Kresović B, Tapanarova A, Tomić Z, Životić L, Vujović D, Sredojević Z, Gajić B. Grain yield and water use efficiency of maize as influenced by different irrigation regimes through sprinkler irrigation under temperate climate. Agric Water Manag. 2016;169:34-43. DOI: https://doi.org/10.1016/j.agwat.2016.01.023

Lobell DB, Cassman KG, Field CB. Crop yield gaps: their importance, magnitudes, and causes. Ann Rev Environ Resour. 2009;34:179-204. DOI: https://doi.org/10.1146/annurev.environ.041008.093740

Merriam JL, Keller J. Farm irrigation system evaluation: a guide for management. Logan (UT): Utah State University; 1978. 275p.

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario estadístico agropecuario 2019. Montevideo: MGAP; 2019. 256p.

Moreno MA, Medina D, Ortega JF, Tarjuelo JM. Optimal design of center pivot systems with water supplied from wells. Agric Water Manag. 2012;107:12-21. DOI: https://doi.org/10.1016/j.agwat.2012.01.016

Naciones Unidas, CEPAL. La economía del cambio climático en América Latina y el Caribe: síntesis 2010. Santiago de Chile: UN; 2010. 113p. DOI: https://doi.org/10.18356/db23b30f-es

Pandey RK, Maranville JW, Adamou A. Deficit irrigation and nitrogen effects on maize in a Sahelian environment: grain yield and yiel components. Agric Water Manag. 2000;46(1):1-13. DOI: https://doi.org/10.1016/S0378-3774(00)00073-1

Pereira LS, de Juan JA, Picornell MA, Tarjuelo JM. El Riego y sus Tecnologias. Albacete (ES): Centro Regional de Estudios del Agua; 2010. 296p.

Ritchie SW, Hanway JJ. How a corn plant develops. Iowa: Iowa State University of Science and Technology; 1982. 21p. (Special Report; N° 48).

Rivetti A. Producción de maíz bajo diferentes regímenes de riego complementario en Río Cuarto, Córdoba, Argentina: I. Rendimiento en grano de maíz y sus componentes. Rev Fac Cienc Agrar. 2006;28(2):25-36.

Rudnick DR, Irmak S, West C, Chávez JL, Kisekka I, Marek TH, Schneekloth JP, Mitchell McCallister D, Sharma V, Djaman K, Aguilar J, Schipanski ME, Rogers DH, Schlegel A. Deficit Irrigation Management of Maize in the High Plains Aquifer Region: A Review. J Am Water Resour Assoc. 2019;55(1):38-55. DOI: https://doi.org/10.1111/1752-1688.12723

Salvagiotti F. Rendimientos potenciales en maíz: brechas de producción y prácticas de manejo para reducirlas. In: Para mejorar la producción. Oliveros: INTA; 2009. p. 61-6. (Para mejorar la producción; 41).

Sawchick J, Formoso F. Inserción del riego en rotaciones de cultivos y pasturas. In: Tecnología de producción de cultivos y pasturas. Montevideo: INIA; 2000. p. 13-25

Scardigno A. New solutions to reduce water and energy consumption in crop production: a water energy food nexus perspective. Curr Opin Environ Sci Health. 2020;13:11-5. DOI: https://doi.org/10.1016/j.coesh.2019.09.007

Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA. 2011;108(50):20260-4. DOI: https://doi.org/10.1073/pnas.1116437108

Trout TJ, DeJonge KC. Water productivity of maize in the US high plains. Irrig Sci. 2017;35:251-66. DOI: https://doi.org/10.1007/s00271-017-0540-1

World food and agriculture: Statistical Yearbook 2013. Rome: FAO; 2013. 307p.

Yazar A, Howell TA, Dusek DA, Copeland KS. Evaluation of crop water stress index for LEPA irrigated corn. Irrig Sci. 1999;18(4):171-80. DOI: https://doi.org/10.1007/s002710050059

Publicado

2021-04-07

Como Citar

1.
Hayashi RM, Dogliotti S. Produtividade da água no milho, com diferentes níveis de irrigação deficitária, em clima úmido. Agrocienc Urug [Internet]. 7º de abril de 2021 [citado 16º de maio de 2024];25(1):e390. Disponível em: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/390

Edição

Seção

Soil and Water
QR Code

Métricas

Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações

Artigos mais lidos pelo mesmo(s) autor(es)