Adjustment of the AquaCrop model in maize with different levels of irrigation in southern Uruguay temperate climate conditions

Authors

DOI:

https://doi.org/10.31285/AGRO.27.1185

Keywords:

deficit irrigation, crop simulation, Zeamays, humid climate

Abstract

The AquaCrop model allows evaluating and designing irrigation strategies that improve the use of irrigation water. The objective of this research was to calibrate and validate the AquaCrop model for maize to the climatic conditions of southern Uruguay, with different irrigation water management. This model was calibrated and validated for corn using experimental data from irrigation trials with different deficit levels in three seasons, 2015-16 and 2016-17 (calibration) and 2014-15 (validation). Three maximum irrigation depths were evaluated: 3, 6 and 9 mm day-1, and rainfed (rainfall only). The crop was parameterized for local conditions and water stress coefficients were adjusted. The calibration simulated the yield, biomass and soil moisture in the irrigated treatments with good performance. All the statistic indexes used to evaluate the adjustment between the observed and simulated data model indicated a good model performance, with the exception of the efficiency coefficient of the Nash-Sutcliffe (EF) model. The model underestimated the yield in the rainfed treatment (EF of -0.52) when root depth was limited to 0.7 m. However, the test soil allowed for greater radical exploration than the initially used. At 0.90 m root depth, the model was good at simulating the yields in the rainfed treatment, mainly in dry years (EF of 0.79). The model predicts the yield with good adjustment in different irrigation and rainfall situations if the stress coefficients are adjusted and the crop is properly parameterized, mainly the root depth.

Downloads

Download data is not yet available.

References

Abedinpour M, Sarangi A, Rajput TBS, Singh M. Prediction of maize yield under future water availability scenarios using the AquaCrop model. J Agric Sci. 2014;152(4):558-74. Doi: 10.1017/S0021859614000094.

Abedinpour M, Sarangi A, Rajput TBS, Singh M, Pathak H, Ahmad T. Performance evaluation of AquaCrop model for maize crop in a semi-arid environment. Agric Water Manag. 2012;110:55-66. Doi: 10.1016/j.agwat.2012.04.001.

Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration. guidelines for computing crop water requirements. Rome: FAO; 1998. 300p.

Bachino F. Análisis de costos y rentabilidades en riego por aspersión. In: Riego en cultivos y pasturas. 2do Seminario Internacional. Montevideo: INIA; 2012. pp. 83-97.

Barros VR, Field CR, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL,editors. Climate Change 2014: Impacts, adaptation, and vulnerability: Part B. regional aspects. New York: Cambridge University Press; 2014. 688p.

Bernardo S, Soares AA, Mantovani EC. Manual de irrigaçao. 7a ed. Viçosa: Universidad Federal de Viçosa; 2005. 611p.

Clemente G. Modelamiento del rendimiento de maíz (Zea mays L.) e impacto económico ante escenarios futuros de cambio climático usando AquaCrop [grade’s thesis]. El Mantaro (PE): Universidad Nacional del centro del Perú, Facultad de Agronomía; 2020. 284p.

FAO. AQUASTAT Dissemination System [Internet]. Rome: FAO; c2021 [cited 2023 Oct 05]. Available from: https://www.fao.org/aquastat/statistics/query/index.html;jsessionid=CC7831C02D6B731966AAC9A1A76C2255

Fassio A, Carriquiry A, Tojo C, Romero R. Maíz: aspectos sobre su fenología. Montevideo: INIA; 1998. 51p.

Fereres E, Soriano MA. Deficit irrigation for reducing agricultural water use. J Exp Bot. 2007;58(2):147-59.

García Petillo M, Puppo L, Hayashi R, Morales P. Metodología para determinar los parámetros hídricos de un suelo a campo [Internet]. [place unknown: publisher unknown]; 2012. 10p. Available from: https://bit.ly/3rEWdPy

Giménez L. AquaCrop model evaluation in maize under different water availabilities in the western of Uruguay. Int J Plant Animal Env Sci. 2019;9(2):103-17. Doi: 10.21276/ijpaes.

Hayashi R, Dogliotti S. Water productivity in maize, at different levels of deficit irrigation in humid climate. Agrocienc Urug. 2021;25(1):e390. Doi: 10.31285/agro.25.390.

Hoffman GJ, Evans RG, Jensen ME, Elliot RL. Desing and operation of farm irrigation systems. 2nd ed. St. Joseph: ASABE; 2007. 862p.

Hsiao TC, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop - the FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J. 2009;101:448-59.

INASE; INIA. Resultados experimentales de la evaluación nacional de cultivares de Maíz para grano y maíz para silo: período 2014. Uruguay: INASE; 2015. 50p.

Jamieson PD, Porter JR, Wilson DR. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Res. 1991;27(4):337-50. Doi: 10.1016/0378-4290(91)90040-3.

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario estadístico agropecuario 2019. Montevideo: MGAP; 2019. 256p.

Molfino JH, Califra A. Agua disponible de las tierras del Uruguay: segunda aproximación [Internet]. [place unknown: publisher unknown]; 2001 [cited 2023 Oct 05]. 13p. Available from: https://bit.ly/3DtUJsm

Naciones Unidas. La economía del cambio climático en América Latina y el Caribe[Internet]. Santiago de Chile: UN; 2010 [cited 2023 Oct 05]. 113p. Available from: https://bit.ly/3F2CMTZ

Nash JE, Sutcliffe JV. River flow forecasting through conceptual models: Part 1. A discussion of principles. J Hydrol. 1970;10(3):282-90.

Pereira LS, Allen RG. Crop water requirements. In: van Lier HN, Pereira LS, Steiner FR, editors. CIGR Handbook of Agricultural Engineering. Vol I, Land and water engineering. St. Joseph: ASAE; 1999. pp. 213-62.

PNA AGRO: Plan Nacional de Adaptación a la Variabilidad y el Cambio Climático para el Sector Agropecuario [Internet]. [place unknown]: MGAP; 2019 [cited 2023 Oct 05]. 125p. Available from: https://bit.ly/48DMutr

Raes D, Steduto P, Hsiao TC, Fereres E. AquaCrop - The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agron J. 2009;101(3):438-47.

Raes D, Steduto P, Hsiao TC, Fereres E. Reference manual: AquaCrop version 4.0. Rome: FAO; 2012. 3v.

Ran H, Kang S, Li F, Du T, Tong L, Li S, Ding R, Zhang X. Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agric Water Manag. 2018;203:438-50. Doi: 10.1016/j.agwat.2018.01.030.

Ritchie SW, Hanway JJ. How a corn plant develops. Iowa: Iowa State University of Science and Technology; 1982. 21p.

Santhi C, Arnold JG, Williams JR, Dugas WA, Srinivasan R, Hauck LM. Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc. 2001;37(5):1169-88.

Steduto P, Hsiao TS, Fereres E, Raes D. Respuesta del rendimiento de los cultivos al agua. Roma: FAO; 2012. 510p.

Steduto P, Raes D, Hsiao TS. Concepts and applications of AquaCrop: the FAO crop water productivity model. In: Cao W, White JW, Wang E, editors. Crop modelling and decision support. Berlin: Springer; 2009. pp. 175-91.

Tarjuelo JM. El riego por aspersión y su tecnología. 3a ed. Madrid: Mundi-Prensa; 2005. 591p.

Willmott CJ. Some comments on the evaluation of model performance. Bull Am Meteorol Soc. 1982;63:1309-13.

Downloads

Published

2024-02-06

How to Cite

1.
Hayashi R, Dogliotti S. Adjustment of the AquaCrop model in maize with different levels of irrigation in southern Uruguay temperate climate conditions. Agrocienc Urug [Internet]. 2024 Feb. 6 [cited 2024 Mar. 5];27(NE1):e1185. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1185

Issue

Section

Irrigation and water management
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)

1 2 > >>