Identificação de ovinos robustos às alterações e variabilidade climáticas
DOI:
https://doi.org/10.31285/AGRO.29.1477Palavras-chave:
resiliência, robustez, metano, eficiência alimentar, fenômicaResumo
A produção pecuária, em particular a ovinocultura, enfrenta o desafio de aumentar a produção alimentar em um contexto de recursos limitados, com menos acesso a terras aráveis e suplementos. E, explicado pelas alterações climáticas e pela variabilidade, o acesso a pastagens e água de elevada qualidade e quantidade seria restringido. Além disso, os ovinos estarão expostos com maior freqüência e por períodos mais longos, a temperaturas mais elevadas, alterações no regime de chuvas e a um cenário diferente do atual de pragas e doenças. Ademais, considerando que os ovinos foram selecionados para características produtivas durante um longo período de tempo, é possível que os ovinos modernos sejam menos robustos. Paralelamente, temos as preocupações da sociedade sobre a contribuição da pecuária para as emissões de metano, o bem-estar animal, a competição por comida entre humanos e animais, a segurança alimentar e a resistência a antimicrobianos e antiparasitários. Para enfrentar o cenário descrito seriam necessários animais mais eficientes, resilientes e adaptados. O presente trabalho tem como objetivo revisar os conceitos de robustez, resiliência e eficiência e apresentar estudos sobre estas características dentro de raças e/ou raças que poderiam ser consideradas nos programas de melhoramento genético de ovinos em um cenário de mudanças e variabilidade climáticas.
Downloads
Referências
Abella I, Cardellino RC, Mueller J, Cardellino RA, Benítez D, Lira R. South American sheep and wool industries. In: Cottle D, editor. International sheep and wool handbook. Nottingham: Nottingham University Press; 2010. p. 85-94. DOI: https://doi.org/10.7313/UPO9781907284595.006
Aleri JW, Hine BC, Pyman MF, Mansell PD, Wales WJ, Mallard B, Fisher AD. Assessing adaptive immune response phenotypes in Australian Holstein-Friesian heifers in a pasture-based production system. J Anim Sci. 2015;93(7):3713-21. Doi: 10.2527/jas.2015-9078. DOI: https://doi.org/10.2527/jas.2015-9078
Amarilho-Silveira F, De Barbieri I, Cobuci JA, Balconi C, Ferreira G, Ciappesoni G. Residual feed intake for Australian Merino sheep estimated in less than 42 days of trial. Livest Sci. 2022;258:104889. Doi: 10.1016/j.livsci.2022.104889. DOI: https://doi.org/10.1016/j.livsci.2022.104889
Anand R, Kurmi R, Kumar R. Revolutionizing animal agriculture through precision livestock technology. Agriculture and Food. 2023;5:432-4.
Arndt SS, Goerlich VC, van der Staay FJ. A dynamic concept of animal welfare: the role of appetitive and adverse internal and external factors and the animal’s ability to adapt to them. Front Anim Sci. 2022;3:908513. Doi: 10.3389/fanim.2022.908513. DOI: https://doi.org/10.3389/fanim.2022.908513
Balconi Marques C, Goldberg V, Ciappesoni G. Genetic parameters for production traits, resistance and resilience to Nematode parasites under different worm burden challenges in Corriedale sheep. Vet Parasitol. 2020;287:109272. Doi: 10.1016/j.vetpar.2020.109272. DOI: https://doi.org/10.1016/j.vetpar.2020.109272
Beef + Lamb New Zealand Genetics. Low input sheep progeny test [Internet]. Dunedin: Beef + Lamb New Zealand Genetics; 2021 [cited 2025 Apr 29]. 34p. Available from: https://www.blnzgenetics.com/files/1632459786_Low%20Input%20Public%20Report%20-%20Sept2021.pdf
Benavides MV, Sonstegard TS, Van Tassell C. Genomic regions associated with sheep resistance to gastrointestinal nematodes. Trends Parasitol. 2016;32(6):470-80. Doi: 10.1016/j.pt.2016.03.007. DOI: https://doi.org/10.1016/j.pt.2016.03.007
Berghof TVL, Poppe M, Mulder HA. Opportunities to improve resilience in animal breeding programs. Front Genet. 2019;9:692. Doi: 10.3389/fgene.2018.00692. DOI: https://doi.org/10.3389/fgene.2018.00692
Berton MP, de Oliveira Silva RM, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gavinã BV, Toro MA, Banchero G, Oliveira PS, Eler JP, Baldi F, Ferraz JBS. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. J Anim Sci Biotechnol. 2017;8:73. Doi: 10.1186/s40104-017-0190-4. DOI: https://doi.org/10.1186/s40104-017-0190-4
Bolormaa S, Swan AA, Stothard P, Khansefid M, Moghaddar N, Duijvesteijn N, van der Werf JHJ, Daetwyler HD, MacLeod IM. A conditional multi-trait sequence GWAS discovers pleiotropic candidate genes and variants for sheep wool, skin wrinkle and breech cover traits. Genet Sel Evol. 2021;53(1):58. Doi: 10.1186/s12711-021-00651-0. DOI: https://doi.org/10.1186/s12711-021-00651-0
Brito LF, Oliveira HR, McConn BR, Schinckel AP, Arrazola A, Marchant-Forde JN, Johnson JS. Large-scale phenotyping of livestock welfare in commercial production systems: a new frontier in animal breeding. Front Genet. 2020;11:793. Doi: 10.3389/fgene.2020.00793. DOI: https://doi.org/10.3389/fgene.2020.00793
Bunch TD, Evans RC, Wang S, Brennand CP, Whittier DR, Taylor BJ. Feed efficiency, growth rates, carcass evaluation, cholesterol level and sensory evaluation of lambs of various hair and wool sheep and their crosses. Small Rumin Res. 2004;52:239-45. Doi: 10.1016/j.smallrumres.2003.07.001. DOI: https://doi.org/10.1016/j.smallrumres.2003.07.001
Burke JM, Miller JE. Relative resistance to gastrointestinal nematode parasites in Dorper, Katahdin, and St. Croix lambs under conditions encountered in the southeastern region of the United States. Small Rumin Res. 2004;54:43-51. Doi: 10.1016/j.smallrumres.2003.10.009. DOI: https://doi.org/10.1016/j.smallrumres.2003.10.009
Can we find a better way to compare sheep performance? Beyond the Bale. 2021;86:44-6.
Can we find a better way to compare sheep performance and profitability on a per hectare basis? Beyond the Bale. 2022;90:44-5.
Cantalapiedra-Hijar G, Abo-Ismail M, Carstens GE, Guan LL, Hegarty R, Kenny DA, McGee M, Plastow G, Relling A, Ortigues-Marty I. Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal. 2018;12(s2):s321-s335. Doi: 10.1017/S1751731118001489. DOI: https://doi.org/10.1017/S1751731118001489
Carracelas B, Navajas EA, Vera B, Ciappesoni G. Genome-wide association study of parasite resistance to gastrointestinal nematodes in Corriedale sheep. Genes (Basel). 2022;13(9):1548. Doi: 10.3390/genes13091548. DOI: https://doi.org/10.3390/genes13091548
Chay-Canul AJ, Aguilar-Urquizo E, Parra-Bracamonte GM, Piñeiro-Vazquez ÁT, Sanginés-García JR, Magaña-Monforte JG, García-Herrera RA, López-Villalobos N. Ewe and lamb pre-weaning performance of Pelibuey and Katahdin hair sheep breeds under humid tropical conditions. Ital J Anim Sci. 2019;18:850-7. Doi: 10.1080/1828051X.2019.1599305. DOI: https://doi.org/10.1080/1828051X.2019.1599305
Ciappesoni G, Gimeno D, Coronel F. Progreso genético logrado en las evaluaciones ovinas del Uruguay. Arch Latinoam Prod Anim. 2014;22:73-80.
Ciappesoni G, Marques C, Navajas E, Peraza P, Carracelas B, Vera B, De Barbieri I, Salada S, Castells D, Monzalvo C. Breeding for sheep parasite resistance in extensive production systems in Uruguay: from phenotype to genotype. In: Viljoen G, Garcia Podesta M, Boettcher P, editors. International Symposium on Sustainable Animal Production and Health-Current status and way forward. Rome: FAO; 2023. p. 224-36.
Cockrum RR, Stobart RH, Lake SL, Cammack KM. Phenotypic variation in residual feed intake and per-formance traits in rams. Small Rumin Res. 2013;113:313-2. Doi: 10.1016/j.smallrumres.2013.05.001. DOI: https://doi.org/10.1016/j.smallrumres.2013.05.001
Colditz IG, Hine BC. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim Prod Sci. 2016;56:1961-83. Doi: 10.1071/AN15297. DOI: https://doi.org/10.1071/AN15297
De Barbieri I, Ferreira G, Ramos Z, Navajas EA, Ciappesoni G. Consequences of contrasting feed effi-ciency as lamb on later ewe performance. In: Book of abstracts of the 73rd Annual Meeting of the European Federation of Animal Science. The Netherlands: Wageningen Academic Publishers; 2022. p. 674.
De Barbieri I, Navajas E, Blumetto O, Marques C, Ciappeosni G. 041 Breeding for feed efficiency and methane emissions in sheep. Anim Sci Proc. 2023;14:572. Doi: 10.1016/j.anscip.2023.04.042. DOI: https://doi.org/10.1016/j.anscip.2023.04.042
De Barbieri I, Navajas E, Douhard F, Conington J, Ramos Z, Ciappesoni G. PL-8 A review of sheep resilience. Anim Sci Proc. 2023;14:11-12. Doi: 10.1016/j.anscip.2023.01.009. DOI: https://doi.org/10.1016/j.anscip.2023.01.009
De Barbieri I, Navajas E, Ramos Z, Velazco J, Ciappesoni G. Explorando la eficiencia de conversión del alimento en ovinos en Uruguay. In: Cueto MI, Maurino J, Giovannini N, Bruno Galarraga MM, editors. Actualización en producción ovina 2022. Paraje Villaverde: INTA EEA Bariloche; 2022. p. 19-25.
De Barbieri I, Navajas EA, Giorello D, Velazco JI, Banchero G, Rodríguez B, Rovira F, Ciappesoni G. Association between feed efficiency and methane emissions, performance and health in Merino sheep. In: Book of abstracts of the 71st Annual Meeting of the European Federation of Animal Science. The Netherlands: Wageningen Academic Publishers; 2020. p. 560.
del Campo M, De Barbieri I, Soares de Lima JM, Lorenze P, Rovira F, De Souza D, Rodríguez L, Abella I, van Lier E. Evaluación de nuevas variables que apuntan a la mejora del bienestar animal y al lo-gro de ovinos más resilientes a condiciones extensivas en la raza Merino Australiano. Arch Latinoam Prod Anim. 2021;29:108-10.
Doeschl-Wilson A, Knap PW, Opriessnig T, More SJ. Livestock disease resilience: from individual to herd level. Animal. 2021;15 Suppl 1:100286. Doi: 10.1016/j.animal.2021.100286. DOI: https://doi.org/10.1016/j.animal.2021.100286
Doeschl-Wilson AB, Villanueva B, Kyriazakis I. The first step toward genetic selection for host tolerance to infectious pathogens: obtaining the tolerance phenotype through group estimates. Front Genet. 2012;3:265. Doi: 10.3389/fgene.2012.00265. DOI: https://doi.org/10.3389/fgene.2012.00265
Douhard F, Doeschl-Wilson AB, Corbishley A, Hayward AD, Marcon D, Weisbecker JL, Aguerre S, Bordes L, Jacquiet P, McNeilly TN, Sallé G, Moreno-Romieux C. The cost of host genetic resistance on body condition: evidence from divergently selected sheep. Evol Appl. 2022;15(9):1374-89. Doi: 10.1111/eva.13442. DOI: https://doi.org/10.1111/eva.13442
Douhard F, Douhard M, Gilbert H, Monget P, Gaillard JM, Lemaître JF. How much energetic trade-offs limit selection? Insights from livestock and related laboratory model species. Evol Appl. 2021;14(12):2726-49. Doi: 10.1111/eva.13320. DOI: https://doi.org/10.1111/eva.13320
Douhard F, Rupp R, Gilbert H. Feed efficiency and resource allocation trade-offs: theory, evidence and prospects. In: Veerkamp RF, de Haas Y, editors. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. The Netherlands: Wageningen Academic Publishers; 2022. p. 264-7. DOI: https://doi.org/10.3920/978-90-8686-940-4_54
Ferreira GF, Ciappesoni G, Castells D, Navajas EA, Giorello D, Banchero G, De Barbieri I. Feed conversion efficiency in sheep genetically selected for resistance to gastrointestinal nematodes. Anim Prod Sci. 2021;61:754-60. Doi: 10.1071/AN20121. DOI: https://doi.org/10.1071/AN20121
Friggens NC, Adriaens I, Boré R, Cozzi G, Jurquet J, Kamphuis C, Leiber F, Lora I, Sakowski T, Statham J, De Haas Y. Resilience: reference measures based on longer-term consequences are needed to unlock the potential of precision livestock farming technologies for quantifying this trait. Peer Community J. 2022;2:e38. Doi: 10.24072/pcjournal.136. DOI: https://doi.org/10.24072/pcjournal.136
Friggens NC, Blanc F, Berry DP, Puillet L. Deciphering animal robustness: a synthesis to facilitate its use in livestock breeding and management. Animal. 2017;11(12):2237-51. Doi: 10.1017/S175173111700088X. DOI: https://doi.org/10.1017/S175173111700088X
Friggens NC, Ithurbide M, Lenoir G. Getting to grips with resilience: towards large-scale phenotyping of this complex trait. JDS Communications. Forthcoming 2023. DOI: https://doi.org/10.3168/jdsc.2023-0434
Garcia-Baccino CA, Marie-Etancelin C, Tortereau F, Marcon D, Weisbecker JL, Legarra A. Detection of unrecorded environmental challenges in high-frequency recorded traits, and genetic determinism of resilience to challenge, with an application on feed intake in lambs. Genet Sel Evol. 2021;53(1):4. Doi: 10.1186/s12711-020-00595-x. DOI: https://doi.org/10.1186/s12711-020-00595-x
Guinan FL, Wiggans GR, Norman HD, Dürr JW, Cole JB, Van Tassell CP, Misztal I, Lourenco D. Changes in genetic trends in US dairy cattle since the implementation of genomic selection. J Dairy Sci. 2023;106(2):1110-29. Doi: 10.3168/jds.2022-22205. DOI: https://doi.org/10.3168/jds.2022-22205
Hatcher S, Gardner GE, Gill SD, Lee S, Swan AA, Van Der Werf JHJ. A science-based approach to breeding the future Merino. In: Proceedings of the 9th World Merino Conference. Stellenbosch: South Africa; 2014. p. 1-15.
Hayes B, Kemper K, Silva LPE. Breeding Australian cattle for production in the year 2050. In: Proceedings of the 24th Biennial Conference of the Association for the Advancement of Animal Breeding and Genetics. Armidale: AAABG; 2021. p. 1-5.
Henry BK, Eckard RJ, Beauchemin KA. Adaptation of ruminant livestock production systems to climate changes. Animal. 2018;12(s2):s445-s456. Doi: 10.1017/S1751731118001301. DOI: https://doi.org/10.1017/S1751731118001301
Herd RM, Arthur PF. Physiological basis for residual feed intake. J Anim Sci. 2009;87(14 Suppl):E64-71. Doi: 10.2527/jas.2008-1345. DOI: https://doi.org/10.2527/jas.2008-1345
Hine BC, Acton GA, Elks DJ, Niemeyer DDO, Bell AM, Colditz IG, Ingham AB, Smith JL. Targeting improved resilience in Merino sheep: correlations between immune competence and health and fitness traits. Animal. 2022;16(7):100544. Doi: 10.1016/j.animal.2022.100544. DOI: https://doi.org/10.1016/j.animal.2022.100544
Hine BC, Bell AM, Niemeyer DDO, Duff CJ, Butcher NM, Dominik S, Ingham AB, Colditz IG. Immune competence traits assessed during the stress of weaning are heritable and favorably genetically correlated with temperament traits in Angus cattle. J Anim Sci. 2019;97(10):4053-65. Doi: 10.1093/jas/skz260. DOI: https://doi.org/10.1093/jas/skz260
Hine BC, Mallard BA, Ingham AB, Colditz IG. Immune competence in livestock. In: Hermesch S, Dominik S, editors. Breeding focus 2014: improving resilience. Armidale: Animal Genetics and Breeding Unit; 2014. p. 49-64.
Huber K. Resource allocation mismatch as pathway to disproportionate growth in farm animals - prerequisite for a disturbed health. Animal. 2018;12(3):528-36. Doi: 10.1017/S1751731117002051. DOI: https://doi.org/10.1017/S1751731117002051
Hussein AH, Patra AK, Puchala R, Wilson BK, Goetsch AL. Effects of restricted availability of drinking water on blood characteristics and constituents in Dorper, Katahdin, and St. Croix Sheep from different regions of the USA. Animals (Basel). 2022;12(22):3167. Doi: 10.3390/ani12223167. DOI: https://doi.org/10.3390/ani12223167
Jonker A, Hickey SM, Rowe SJ, Janssen PH, Shackell GH, Elmes S, Bain WE, Wing J, Greer GJ, Bryson B, MacLean S, Dodds KG, Pinares-Patiño CS, Young EA, Knowler K, Pickering NK, McEwan JC. Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers. J Anim Sci. 2018;96(8):3031-42. Doi: 10.1093/jas/sky187. DOI: https://doi.org/10.1093/jas/sky187
Joy A, Dunshea FR, Leury BJ, Clarke IJ, DiGiacomo K, Chauhan SS. Resilience of small ruminants to climate change and increased environmental temperature: a review. Animals (Basel). 2020;10(5):867. Doi: 10.3390/ani10050867. DOI: https://doi.org/10.3390/ani10050867
Kaseja K, Mucha S, Smith E, Yates J, Banos G, Conington J. Including genotypic information in genetic evaluations increases the accuracy of sheep breeding values. J Anim Breed Genet. 2023;140(4):462-71. Doi: 10.1111/jbg.12771. DOI: https://doi.org/10.1111/jbg.12771
Knap PW, Doeschl-Wilson A. Why breed disease-resilient livestock, and how? Genet Sel Evol. 2020;52(1):60. Doi: 10.1186/s12711-020-00580-4. DOI: https://doi.org/10.1186/s12711-020-00580-4
Koch R, Swiger L, Chambers D, Gregory K. Efficiency of feed use in beef cattle. J Anim Sci. 1963;22:486-94. Doi: 10.2527/jas1963.222486x. DOI: https://doi.org/10.2527/jas1963.222486x
Lee M, Newman SA, Dodds K, Nilforooshan M, Auvray B, McIntyre S, Campbell D. Genomic evaluations of sheep in New Zealand. N Z J Anim Sci Prod. 2021;81:106-11.
Lima NLL, Ribeiro CRF, de Sá HCM, Leopoldino Júnior I, Cavalcanti LFL, Santana RAV, Furusho-Garcia IF, Pereira IG. Economic analysis, performance, and feed efficiency in feedlot lambs. R Bras Zootec. 2017;46:821-9. Doi: 10.1590/S1806-92902017001000005. DOI: https://doi.org/10.1590/s1806-92902017001000005
Lines DS, Pitchford WS, Bottema CD, Herd R, Oddy VH. Selection for residual feed intake affects appetite and body composition rather than energetic efficiency. Anim Prod Sci. 2014;58:175-84. Doi: 10.1071/AN13321. DOI: https://doi.org/10.1071/AN13321
Macé T, González-García E, Foulquié D, Carrière F, Pradel J, Durand C, Douls S, Allain C, Parisot S, Hazard D. Genome-wide analyses reveal a strong association between LEPR gene variants and body fat reserves in ewes. BMC Genomics. 2022;23(1):412. Doi: 10.1186/s12864-022-08636-z. DOI: https://doi.org/10.1186/s12864-022-08636-z
Macé T, González-García E, Pradel J, Parisot S, Carrière F, Douls S, Foulquié D, Hazard D. Genetic analysis of robustness in meat sheep through body weight and body condition score changes over time. J Anim Sci. 2018;96(11):4501-11. Doi: 10.1093/jas/sky318. DOI: https://doi.org/10.1093/jas/sky318
Macías-Cruz U, Álvarez-Valenzuela FD, Rodríguez-García J, Correa-Calderón A, Torrentera-Olivera NG, Molina-Ramírez L, Avendaño-Reyes L. Crecimiento y características de canal en corderos pelibuey puros y cruzados f1 con razas dorper y katahdin en confinamiento. Arch Med Vet. 2010;42:147-54. Doi: 10.4067/S0301-732X2010000300005. DOI: https://doi.org/10.4067/S0301-732X2010000300005
Mallard BA, Emam M, Paibomesai M, Thompson-Crispi K, Wagter-Lesperance L. Genetic selection of cattle for improved immunity and health. Jpn J Vet Res. 2015;63 Suppl 1:S37-44.
McManus CM, Faria DA, Lucci CM, Louvandini H, Pereira SA, Paiva SR. Heat stress effects on sheep: are hair sheep more heat resistant? Theriogenology. 2020;155:157-67. Doi: 10.1016/j.theriogenology.2020.05.047. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.047
Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario Estadístico Agropecuario 2024 [Internet]. Montevideo: MGAP; 2024 [cited 2025 Apr 29]. Available from: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/diea/anuario2024
Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario Estadístico Agropecuario 2014 [Internet]. Montevideo: MGAP; 2014 [cited 2025 Apr 29]. Available from: http://www.mgap.gub.uy/Dieaanterior/Anuario2014/diea-Anuario%202014-Digital01.pdf
Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Resultados de la encuesta ganadera 2016 [Internet]. Montevideo: MGAP; 2018 [cited 2025 Apr 29]. 60p. Available from: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/datos-y-estadisticas/estadisticas/resultados-encuesta-ganadera-nacional-2016
Mitchell D, Snelling EP, Hetem RS, Maloney SK, Strauss WM, Fuller A. Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J Anim Ecol. 2018;87(4):956-73. Doi: 10.1111/1365-2656.12818. DOI: https://doi.org/10.1111/1365-2656.12818
Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Global Food Sec. 2017;14:1-8. Doi: 10.1016/j.gfs.2017.01.001. DOI: https://doi.org/10.1016/j.gfs.2017.01.001
Mucha S, Bunger L, Conington J. Genome-wide association study of footrot in Texel sheep. Genet Sel Evol. 2015;47(1):35. Doi: 10.1186/s12711-015-0119-3. DOI: https://doi.org/10.1186/s12711-015-0119-3
Mucha S, Tortereau F, Doeschl-Wilson A, Rupp R, Conington J. Meta-analysis of genetic parameters for resilience and efficiency traits in goats and sheep. Animal. 2022;16(3):100456. Doi: 10.1016/j.animal.2022.100456. DOI: https://doi.org/10.1016/j.animal.2022.100456
Navajas EA, Ciappesoni G, Gimeno D, Velazco JI, De Barbieri I. Association of genetic resistance to internal nematodes and production traits on feed efficiency and methane emissions in Corriedale lambs. In: Veerkamp RF, de Haas Y, editors. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. The Netherlands: Wageningen Academic Publishers; 2022. p. 195-8. DOI: https://doi.org/10.3920/978-90-8686-940-4_37
Navajas EA, Ravagnolo O, De Barbieri I, Pravia MI, Aguilar I, Lema MO, Vera B, Peraza P, Marques C, Velazco J, Ciappesoni G. Genetic selection of feed efficiency and methane emissions in sheep and cattle in Uruguay: progress and limitations. In: Veerkamp RF, de Haas Y, editors. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. The Netherlands: Wageningen Academic Publishers; 2022. p. 164-7. DOI: https://doi.org/10.3920/978-90-8686-940-4_29
Nicolás-López P, Macías-Cruz U, Correa-Calderón A, Mellado-Bosque MA, Díaz-Molina R, Avendaño-Reyes L. Ajustes asociados a la aclimatación y estrés oxidativo en ovinos bajo estrés calórico: una revisión. Inf Tec Econ Agrar. 2021;117:494-512. DOI: https://doi.org/10.12706/itea.2021.005
Niggeler A, Tetens J, Stäuble A, Steiner A, Drögemüller C. A genome-wide significant association on chromosome 2 for footrot resistance/susceptibility in Swiss White Alpine sheep. Anim Genet. 2017;48(6):712-5. Doi: 10.1111/age.12614. DOI: https://doi.org/10.1111/age.12614
Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci. 2006;84(1):145-53. Doi: 10.2527/2006.841145x. DOI: https://doi.org/10.2527/2006.841145x
Notter DR. Potential for hair sheep in the United States. J Anim Sci. 2000;77:1-8. Doi: 10.2527/jas2000.77E-Suppl1h. DOI: https://doi.org/10.2527/jas2000.77E-Suppl1h
Paganoni B, Rose G, Macleay C, Jones C, Brown DJ, Kearney G, Ferguson M, Thompson AN. More feed efficient sheep produce less methane and carbon dioxide when eating high-quality pellets. J Anim Sci. 2017;95(9):3839-50. Doi: 10.2527/jas2017.1499. DOI: https://doi.org/10.2527/jas.2017.1499
Pérez RV, Macías U, Avendaño L, Correa-Calderón A, López Baca M, Lara Rivera AL. Impacto del estrés por calor en la producción de ovinos de pelo: revisión. Rev Mex Cienc Pecuarias. 2020;11:205-22. Doi: 10.22319/rmcp.v11i1.4923. DOI: https://doi.org/10.22319/rmcp.v11i1.4923
Pickering NK. Genetics of flystrike, dagginess and associated traits in New Zealand dual-purpose sheep [doctoral dissertation]. Palmerston North (NZ): Massey University; 2013. 355p.
Pickering NK, Auvray B, Dodds KG, McEwan JC. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genomics. 2015;16:958. Doi: 10.1186/s12864-015-2148-2. DOI: https://doi.org/10.1186/s12864-015-2148-2
Poppe M, Veerkamp RF, van Pelt ML, Mulder HA. Exploration of variance, autocorrelation, and skewness of deviations from lactation curves as resilience indicators for breeding. J Dairy Sci. 2020;103(2):1667-84. Doi: 10.3168/jds.2019-17290. DOI: https://doi.org/10.3168/jds.2019-17290
Pravia MI, Navajas EA, Aguilar I, Ravagnolo O. Evaluation of feed efficiency traits in different Hereford populations and their effect on variance component estimation. Anim Prod Sci. 2022;62:1652-60. Doi: 10.1071/AN21420. DOI: https://doi.org/10.1071/AN21420
Pulido-Rodríguez LF, Titto CG, Bruni GdeA, Froge GA, Fuloni MF, Payan-Carrera R, Henrique FL, Geraldo ACAPdeM, Pereira AMF. Effect of solar radiation on thermoregulatory responses of Santa Inês sheep and their crosses with wool and hair Dorper sheep. Small Rumin Res. 2021;202:106470. Doi: 10.1016/j.smallrumres.2021.106470. DOI: https://doi.org/10.1016/j.smallrumres.2021.106470
Raadsma H, Walkom S, Sharland B, Esquivelzeta-Rabell C, Brown D, Bunter K, Ferguson M. Genetic architecture of resistance to virulent ovine-footrot in a case-control study of New Zealand Merino sheep. In: 11 Proceedings of the World Congress on Genetics Applied to Livestock Production. Auckland: WCGALP; 2018. p. 335.
Ramos Z, Blair HT, De Barbieri I, Ciappesoni G, Montossi F, Kenyon PR. Phenotypic responses to selection for ultrafine wool in Uruguayan yearling lambs. Agriculture. 2021;11:179. Doi: 10.3390/agriculture11020179. DOI: https://doi.org/10.3390/agriculture11020179
Ramos Z, Blair HT, De Barbieri I, Ciappesoni G, Montossi F, Kenyon PR. Productivity and reproduc-tive performance of mixed-age ewes across 20 years of selection for ultrafine wool in Uruguay. Agriculture. 2021;11:712. Doi: 10.3390/agriculture11080712. DOI: https://doi.org/10.3390/agriculture11080712
Ramos Z, Garrick DJ, Blair HT, De Barbieri I, Ciappesoni G, Montossi F, Kenyon PR. Genetic and phenotypic relationships between ewe reproductive performance and wool and growth traits in Uruguayan Ultrafine Merino sheep. J Anim Sci. 2023;101:skad071. Doi: 10.1093/jas/skad071. DOI: https://doi.org/10.1093/jas/skad071
Ramos Z, Garrick DJ, Blair HT, Vera B, Ciappesoni G, Kenyon PR. Genomic regions associated with wool, growth and reproduction traits in Uruguayan Merino sheep. Genes (Basel). 2023;14(1):167. Doi: 10.3390/genes14010167. DOI: https://doi.org/10.3390/genes14010167
Rauw WM. Physiological consequences of selection for increased performance. In: 17th Biennial Conference of the Association for the Advancement of Animal Breeding and Genetics 2007. Armidale: AAABG; 2007. p. 240-7.
Rauw WM, Kanis E, Noordhuizen-Stassen EN, Grommers FJ. Undesirable side effects of selection for high production efficiency in farm animals: a review. Lives Prod Sci. 1998;56:15-33. Doi: 10.1016/S0301-6226(98)00147-X. DOI: https://doi.org/10.1016/S0301-6226(98)00147-X
Ravagnolo O, Aguilar I, Ciappesoni G, Navajas E. Investigación y aplicación de la mejora genética animal para una producción ganadera más sostenible. In: García-Inza G, Paruelo J, Zoppolo R, editors. Aportes científicos y tecnológicos del INIA a las trayectorias agroecológicas. Buenos Aires: Fundación CICCUS; 2023. p. 373-94.
Sauvant D, Martin O. Robustesse, rusticité, flexibilité, plasticité (--) les nouveaux critères de qualité des animaux et des systèmes d’élevage: définitions systémique et biologique des différents concepts. INRAE Prod Anim. 2010;23:5-10. Doi: 10.20870/productions-animales.2010.23.1.3280. DOI: https://doi.org/10.20870/productions-animales.2010.23.1.3280
Sheep Genetics. Annual outcomes report 2022-23 [Internet]. Armidale: Meat & Livestock Australia Limited; 2023 [cited 2025 Apr 29]. 11p. Available from: https://www.sheepgenetics.org.au/globalassets/sheep-genetics/about-us/annual-report-2022-23.pdf
Sutera AM, Moscarelli A, Mastrangelo S, Sardina MT, Di Gerlando R, Portolano B, Tolone M. Genome-wide association study identifies new candidate markers for somatic cells score in a local dairy sheep. Front Genet. 2021;12:643531. Doi: 10.3389/fgene.2021.643531. DOI: https://doi.org/10.3389/fgene.2021.643531
Tadesse D, Puchala R, Gipson TA, Goetsch AL. Effects of high heat load conditions on body weight, feed intake, temperature, and respiration of Dorper, Katahdin, and St. Croix sheep. J Appl Anim Res. 2019;47:492-505. Doi: 10.1080/09712119.2019.1674658. DOI: https://doi.org/10.1080/09712119.2019.1674658
Taghipoor M, Pastell M, Martin O, Nguyen Ba H, van Milgen J, Doeschl-Wilson A, Loncke C, Friggens NC, Puillet L, Muñoz-Tamayo R. Animal board invited review: quantification of resilience in farm animals. Animal. 2023;17(9):100925. Doi: 10.1016/j.animal.2023.100925. DOI: https://doi.org/10.1016/j.animal.2023.100925
Thompson-Crispi KA, Hine B, Quinton M, Miglior F, Mallard BA. Association of disease incidence and adaptive immune response in Holstein dairy cows. J Dairy Sci. 2012;95(7):3888-93. Doi: 10.3168/jds.2011-5201. DOI: https://doi.org/10.3168/jds.2011-5201
Thorne JW, Murdoch BM, Freking BA, Redden RR, Murphy TW, Taylor JB, Blackburn HD. Evolution of the sheep industry and genetic research in the United States: opportunities for convergence in the twenty-first century. Anim Genet. 2021;52(4):395-408. Doi: 10.1111/age.13067. DOI: https://doi.org/10.1111/age.13067
Thornton P, Nelson G, Mayberry D, Herrero M. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob Chang Biol. 2021;27(22):5762-72. Doi: 10.1111/gcb.15825. DOI: https://doi.org/10.1111/gcb.15825
Tortereau F, Marie-Etancelin C, Weisbecker JL, Marcon D, Bouvier F, Moreno-Romieux C, François D. Genetic parameters for feed efficiency in Romane rams and responses to single-generation selection. Animal. 2020;14(4):681-7. Doi: 10.1017/S1751731119002544. DOI: https://doi.org/10.1017/S1751731119002544
Tsartsianidou V, Kapsona VV, Sánchez-Molano E, Basdagianni Z, Carabaño MJ, Chatziplis D, Arsenos G, Triantafyllidis A, Banos G. Understanding the seasonality of performance resilience to climate volatility in Mediterranean dairy sheep. Sci Rep. 2021;11(1):1889. Doi: 10.1038/s41598-021-81461-8. DOI: https://doi.org/10.1038/s41598-021-81461-8
Tsartsianidou V, Sánchez-Molano E, Kapsona VV, Basdagianni Z, Chatziplis D, Arsenos G, Triantafyllidis A, Banos G. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet Sel Evol. 2021;53(1):90. Doi: 10.1186/s12711-021-00682-7. DOI: https://doi.org/10.1186/s12711-021-00682-7
Vialoux IM. Genetic parameters of body condition score and effects of BCS and BCS change on ewe performance [doctoral dissertation]. Palmerston North (NZ): Massey University; 2020; 191p.
Walkom SF, Brown DJ. Breeding for resilience and resistance in Merino sheep. In: Hermesch S, Dominik S, editors. Breeding focus 2014: improving resilience. Armidale: Animal Genetics and Breeding Unit; 2014. p. 141-56.
Wang Y, Niu Z, Zeng Z, Jiang Y, Jiang Y, Ding Y, Tang S, Shi H, Ding X. Using high-density SNP array to reveal selection signatures related to prolificacy in Chinese and Kazakhstan sheep breeds. Animals (Basel). 2020;10(9):1633. Doi: 10.3390/ani10091633. DOI: https://doi.org/10.3390/ani10091633
Waters DL, Clark SA, Moghaddar N, van der Werf JH. Genomic analysis of the slope of the reaction norm for body weight in Australian sheep. Genet Sel Evol. 2022;54(1):40. Doi: 10.1186/s12711-022-00734-6. DOI: https://doi.org/10.1186/s12711-022-00734-6
Wildeus S, Turner KE, Collins JR. Growth, intake, diet digestibility, and nitrogen use in three hair sheep breeds fed alfalfa hay. Small Rumin Res. 2007;69:221-7. Doi: 10.1016/j.smallrumres.2005.12.016. DOI: https://doi.org/10.1016/j.smallrumres.2005.12.016
World Bank. Climate Change Knowledge Portal [Internet]. Washington: World Bank Group; [cited 2025 Apr 29]. Available from: https://climateknowledgeportal.worldbank.org/
WWF. Living Planet Report: 2018 aiming higher. Gland: WWF; 2018. 144p.
Zhang M, Dunshea FR, Warner RD, DiGiacomo K, Osei-Amponsah R, Chauhan SS. Impacts of heat stress on meat quality and strategies for amelioration: a review. Int J Biometeorol. 2020;64(9):1613-28. Doi: 10.1007/s00484-020-01929-6. DOI: https://doi.org/10.1007/s00484-020-01929-6
Zhang X, Wang W, Mo F, La Y, Li C, Li F. Association of residual feed intake with growth and slaughtering performance, blood metabolism, and body composition in growing lambs. Sci Rep. 2017;7(1):12681. Doi: 10.1038/s41598-017-13042-7. DOI: https://doi.org/10.1038/s41598-017-13042-7
Zhang Z, Sui Z, Zhang J, Li Q, Zhang Y, Wang C, Li X, Xing F. Identification of signatures of selection for litter size and pubertal initiation in two sheep populations. Animals (Basel). 2022;12(19):2520. Doi: 10.3390/ani12192520. DOI: https://doi.org/10.3390/ani12192520

Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Agrociencia Uruguay

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Métricas do artigo | |
---|---|
Vistas abstratas | |
Visualizações da cozinha | |
Visualizações de PDF | |
Visualizações em HTML | |
Outras visualizações |