SNP arrays evaluation as tools in genetic improvement in Corriedale sheep in Uruguay

Authors

DOI:

https://doi.org/10.31285/AGRO.26.998

Keywords:

accuracy, Corriedale, FEC, GEBV

Abstract

One control strategy for gastrointestinal nematodes (GIN) is genetic selection. This study´s objective was to compare eggs per gram of feces (FEC) and fiber diameter (FD) estimated breeding values (EBV) and genomic EBV (GEBV) in Corriedale breed. Analysis included 19547 lambs with data, and 454, 711 and 383 genotypes from 170, 507 and 50K SNP chips, respectively. A univariate animal model was used for EBV and GEBV estimation, which included contemporary group, type of birth and dam age as fixed effects, and age at recording as covariate. Differential weights (α) were considered in the genomic relationship matrix (G), and the best fit models were identified using Akaike´s Information Criterion (AIC), which were later used for GEBV and accuracies estimation. The use of α only impacted on low density SNP chips. No differences were observed in mean accuracies for the whole population. However, in the genotyped subgroup accuracies increased by 2% with the 170 SNP chip (α=0.25), and by 5% (α=0.5) and 14% (α=0.75) with the 507 SNP chip. No differences were observed in FD EBV and GEBV mean accuracies. These results show that it is possible to increase GEBV accuracies despite the use of low-density chips.

Downloads

Download data is not yet available.

References

Aguilar I, Fernandez EN, Blasco A, Ravagnolo O, Legarra A. Effects of ignoring inbreeding in model-based accuracy for BLUP and SSGBLUP. J Anim Breed Genet. 2020;137:356-64.

Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree and genomic information for genetic evaluation of Holstein final score. J Dairy Sci. 2010;93:743-52.

Aguilar I, Misztal I, Tsuruta S, Legarra A, Wang H. PREGSF90–POSTGSF90: computational tools for the implementation of single-step genomic selection and genome-wide association with ungenotyped individuals in BLUPF90 programs. In: Proceedings of the 10th World Congress on Genetics Applied to Livestock Production [Internet]. [place unknown]: WCGALP; 2014 [cited 2022 May 31]. 3p. Available from: http://www.wcgalp.org/system/files/proceedings/2014/pregsf90-postgsf90-computational-tools-implementation-single-step-genomic-selection-and-genome.pdf.

Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19:716-23.

Auvray B, McEwan JC, Newman SAN, Lee M, Dodds KG. Genomic prediction of breeding values in the New Zealand sheep industry using a 50K SNP chip. J Anim Sci. 2014;92:4375-89.

Balconi Marques C, Goldberg V, Ciappesoni G. Genetic parameters for production traits, resistance and resilience to Nematode parasites under different worm burden challenges in Corriedale sheep. Vet Parasitol [Internet]. 2020 [cited 2022 May 31];287:109272. doi:10.1016/j.vetpar.2020.109272.

Baloche G, Legarra A, Sallé G, Larroque H, Astruc JM, Robert-Granié C, Barillet F. Assessment of accuracy of genomic prediction for French Lacaune dairy sheep. J Dairy Sci. 2014;97:1107-16.

Bernal-Vasquez AM, Möhring J, Schmidt M, Schönleben M, Schön CC, Piepho HP. The importance of phenotypic data analysis for genomic prediction - a case study comparing different spatial models in rye. BMC Genomics [Internet]. 2014 [cited 2022 May 31];15(1):646. doi:10.1186/1471-2164-15-646.

Bishop SC, Morris CA. Genetics of disease resistance in sheep and goats. Small Rum Res. 2007;70:48-59.

Burnham KP, Anderson DR. Akaike´s information criterion: 1973. In: Model selection and multimodel inference: a practical information-theoretic approach. 2nd ed. Heidelberg: Springer; 2002. p. 60-6.

Castells D. Evaluación de resistencia genética de ovinos Corriedale a los nematodos gastrointestinales en Uruguay: heredabilidad y correlaciones genéticas entre el recuento de huevos de nematodos y características productivas [master’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Veterinaria; 2008. 54p.

Christensen OF, Lund MS. Genomic prediction when some animals are not genotyped. Genet Sel Evol [Internet]. 2010 [cited 2022 May 31];42(1):2. doi:10.1186/1297-9686-42-2.

Ciappesoni G, Gimeno D, Ravagnolo O. Genetic relationships between faecal worm egg count and production traits in Merino sheep of Uruguay. In: Proceedings of the 9th World Congress on Genetics Applied to Livestock Production [Internet]. [place unknown]: WCGALP; 2010 [cited 2022 May 31]. 4p. Available from: http://www.wcgalp.org/system/files/proceedings/2010/genetic-relationships-between-faecal-worm-egg-count-and-production-traits-merino-sheep-uruguay.pdf.

Ciappesoni G, Goldberg V, Navajas EA, Macedo F. SNP Assisted Breeding for Sheep extensive systems: Utopia or Reality. In: International Plant & Animal Genome, Conference PAG XXIV [Internet]. [place unknown]: PAG; 2016 [cited 2022 May 31]. Available from: https://pag.confex.com/pag/xxiv/meetingapp.cgi/Paper/22397.

Ciappesoni G, Goldberg V. Gentic parameters for body weight, worm resistance, packed cell volume and FAMACHA under natural infestation in Corriedale sheep. In: Proceedings of the 11th World Congress on Genetics Applied to Livestock Production [Internet]. [place unknown]: WCGALP; 2018 [cited 2022 May 31]. 6p. Available from: http://www.wcgalp.org/system/files/proceedings/2018/genetic-parameters-body-weight-worm-resistance-packed-cell-volume-and-famachac-under-natural.pdf.

Cole JB, VanRaden PM, Connell JRO, Van Tassell CP, Sonstegard TS, Schnabel RD, Taylor JF, Wiggans GR. Distribution and location of genetic effects for dairy traits. J Dairy Sci. 2009;92:2931-46.

Daetwyler HD, Hickey JM, Henshall JM, Dominik S, Gredler B, van der Werf JHJ, Hayes BJ. Accuracy of estimated genomic breeding values for wool and meat traits in a multi-breed sheep population. Anim Prod Sci. 2010;50:1004­10.

Daetwyler HD, Swan AA, van der Werf JH, Hayes BJ. Accuracy of pedigree and genomic predictions of carcass and novel meat quality traits in multi-breed sheep data assessed by cross-validation. Genet Sel Evol. 2012;44:1-11.

Duchemin SI, Colombani C, Legarra A, Baloche G, Larroque H, Astruc JM, Barillet F, Robert-Granié C, Manfredi E. Genomic selection in the French Lacaune dairy sheep breed. J Dairy Sci. 2012;95:2723-33.

Fangmann A. Genomic and conventional evaluations for fertility traits in pigs [doctoral’s thesis]. Göttingen (DE): Universität Göttingen, Fakultät für Agrarwissenschaften; 2018. 152p.

Goddard ME, Hayes BJ. Genomic selection. J Anim Breed Genet. 2007;124:323-30.

Grasso N. Identificación de polimorfismos de un solo nucleótido asociados a la resistencia a parásitos gastrointestinales en ovinos Corriedale [grade’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2013. 67p.

Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-assisted breeding values. Genetics. 2007;177:2389-97.

Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Genomic selection in dairy cattle: progress and challenges. J Dairy Sci. 2009;92:433-43.

Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review: Genomic selection in dairy cattle: Progress and challenges. J Dairy Sci. 2009:92:433-43.

Henderson CR. Best linear unbiased estimation and prediction under a selection model. Biometrics. 1975;31:423-47.

Keane OM, Hanrahan JP, McRae KM, Good B. An independent validation study of loci associated with nematode resistance in sheep. Anim Genet. 2018;49:265-8.

Kriaridou C, Tsairidou S, Houston RD, Robledo D. Genomic prediction using low density marker panels in aquaculture: performance across species, traits, and genotyping platforms. Front Genet [Internet]. 2020 [cited 2022 May 31];11:124. doi:10.3389/fgene.2020.00124.

Lane J, Jubb T, Shephard R, Webb-Ware J, Fordyce G. Priority list of endemic diseases for the red meat industries [Internet]. North Sydney: MLA; 2015 [cited 2022 May 31]. 282p. Final Report: B.AHE.0010. Available from: https://bit.ly/3t8UEa1.

Legarra A, Aguilar I, Misztal I. A relationship matrix including full pedigree and genomic information. J Dairy Sci. 2009;92:4656-63.

Legarra A, Baloche G, Barillet F, Astruc JM, Soulas C, Aguerre X, Arrese F, Mintegi L, Lasarte M, Maeztu F, Beltrán de Heredia I, Ugarte E. Within and across breed genomic predictions and genomic relationships for Western Pyrenees dairy sheep breeds Latxa, Manech and Basco-Béarnaise. J Dairy Sci. 2014;97:3200-12.

Lourenco D, Legarra A, Tsuruta S, Masuda Y, Aguilar I, Misztal I. Single-step genomic evaluations from theory to practice: using SNP chips and sequence data in BLUPF90. Genes (Basel) [Internet]. 2020 [cited 2022 May 22];11(7):790. doi:10.3390/genes11070790.

Macedo F. Marcadores SNP para exclusión de paternidad en las razas Corriedale y Merino Australiano del Uruguay [master’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2017. 67p.

Medrano JF, Aasen E, Sharrow L. DNA extraction from nucleated red blood cells. Biotechniques. 1990;8:43.

Meuwissen THE, Hayes BJ, Goddard ME. Genomic selection: A paradigm shift in animal breeding. Anim Front. 2016;6(1):6-14.

Meuwissen THE, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157:1819-29.

Misztal I, Legarra A, Aguilar I. Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. J Dairy Sci. 2009;92:4648-55.

Misztal I, Tsuruta S, Lourenco DAL, Aguilar I, Legarra A, Vitezica Z. BLUPF90 Family of Programs [Internet]. Georgia: University of Georgia; 2014 [cited 2022 May 31]. Available from: http://nce.ads.uga.edu/wiki/doku.php.

Misztal I, Tsuruta S, Strabel T, Auvray B, Druet T, Lee DH. BLUPF90 and related programs (BGF90). In: Proceedings of the 7th World Congress on Genetics Applied to Livestock Production [Internet]. [place unknown]: WCGALP; 2002 [cited 2022 May 31]. 2p. Available from: http://www.wcgalp.org/system/files/proceedings/2002/blupf90-and-related-programs-bgf90.pdf.

Periasamy K, Pichler R, Poli M, Cristel S, Cetrá B, Medus D, Basar M, Thiruvenkadan AK, Ramasamy S, Ellahi MB, Mohammed F, Teneva A, Shamsuddin M, Podesta MG, Diallo A. Candidate gene approach for parasite resistance in sheep--variation in immune pathway genes and association with fecal egg count. PLoS One [Internet]. 2014 [cited 2022 May 31];9(2):e88337. doi:10.1371/journal.pone.0088337.

Raschia MA, Donzelli MV, Medus PD, Cetrá BM, Maizon DO, Suarez VH, Pichler R, Periasamy K, Poli MA. Single nucleotide polymorphisms from candidate genes associated with nematode resistance and resilience in Corriedale and Pampinta sheep in Argentina. Gene [Internet]. 2021 [cited 2022 May 31];770:145345. doi:10.1016/j.gene.2020.145345.

Rodriguez A, Mederos A, Ciappesoni G. Buenas prácticas para recolección y traslado de materia fecal para examen coprológico: determinación de huevos por gramo (HPG) en ovinos y bovinos. Montevideo: INIA; 2009. 2p. (Cartilla; N°6).

Safari E, Fogarty NM, Gilmour AR. A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livest Prod Sci. 2005;92:271-89.

Stear MJ, Wakelin D. Genetic resistance to parasitic infection. Rev Sci Tech. 1998;1:143-53.

Thompson R, Brotherstone S, White IMS. Estimation of quantitative genetic parameters. Philos Trans R Soc Lond B Biol Sci. 2005;360:1469-77.

Torres TS, Sena LS, Santos GVD, Figueiredo Filho LAS, Barbosa BL, Júnior AS, Britto FB, Sarmento JLR. Genetic evaluation of sheep for resistance to gastrointestinal nematodes and body size including genomic information. Anim Biosci. 2021;34:516-24.

VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91:4414-23.

VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel S. Reliability of genomic predictions for North American Holstein bulls. J Dairy Sci. 2009;92:16-24.

Whitlock HV. Some modifications of the McMaster helminth egg counting technique and apparatus. J Coun Sci Ind Res. 1948;21:177-80.

Published

2022-08-19

How to Cite

1.
Carracelas B, Navajas EA, Vera B, Ciappesoni G. SNP arrays evaluation as tools in genetic improvement in Corriedale sheep in Uruguay. Agrocienc Urug [Internet]. 2022 Aug. 19 [cited 2022 Dec. 6];26(2):e998. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/998

Issue

Section

Animal production and pastures