Resistencia a roya de la hoja en cultivares y líneas de trigo de Paraguay

Autores/as

DOI:

https://doi.org/10.31285/AGRO.27.997

Palabras clave:

roya de la hoja, genes de resistencia, resistencia de planta adulta

Resumen

La roya de la hoja (HR) del trigo pan (Triticum aestvium L.), causada por el hongo Puccinia triticina Eriks, es una de las enfermedades más importantes en Paraguay, en el Cono Sur y a nivel mundial. La importancia económica de la enfermedad es clara cuando se considera que son necesarias dos o más aplicaciones de fungicidas para su control en cultivares susceptibles. La mejor estrategia para el manejo de esta enfermedad es a través de la resistencia genética. Esta investigación fue llevada a cabo en Uruguay con el objetivo de postular los genes de resistencia a HR presentes en 102 líneas y cultivares de trigo de Paraguay y estudiar su resistencia a campo. La presencia de 18 genes mayores de resistencia expresados en plántula (Lr1, Lr2, Lr3a, Lr3bg, Lr3ka, Lr9, Lr10, Lr11, Lr16, Lr17, Lr23, Lr24, Lr26, Lr27+Lr31, Lr28, Lr30, Lr42) fue postulada con base en la reacción frente a distintas razas del patógeno. El gen de resistencia de planta adulta Lr34 fue confirmado en 26% de los materiales con base en el marcador molecular csLV34. Este estudio permitió también diferenciar aquellos materiales cuya resistencia en el campo puede explicarse por su resistencia en plántula y aquellos que poseen resistencia de planta adulta. El conocimiento de los genes de resistencia presentes en el germoplasma de los programas de mejoramiento es de suma importancia para establecer estrategias que logren resistencia efectiva y de larga duración basadas principalmente en la combinación de genes menores de raza no específicos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Annone JG. Roya de la hoja del trigo. In: Importancia económica y estrategias para reducir los efectos sobre la producción. Córdoba: INTA EEA Marcos Juárez; 2006. p. 26-8. (Informe de actualización técnica; 1).

Browder LE. A compendium of information about named genes for low reaction to Puccinia recondita in wheat. Crop Sci. 1980;20:775-9.

CIMMYT. Laboratory protocols: CIMMYT applied molecular genetics laboratory. Mexico: CIMMYT; 2005. 5p.

Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica. 2005;142:169-96.

Cox TS, Raupp WJ, Gill BS. Leaf rust-resistance genes Lr41, Lr42 and Lr43, transferred from Triticum tauschii to common wheat. Crop Sci. 1994;34:339-43.

Dubcovsky J, Lukaszewski AJ, Echaide M, Antonelli EF, Porter DR. Molecular Characterization of Two Triticum speltoides Interstitial Translocations Carrying Leaf Rust and Greenbug Resistance Genes. Crop Sci. 1998;38:1655-60.

Dyck PL, Johnson R. Temperature sensitivity of genes for resistance in wheat to Puccinia recondita. Can J Plant Pathol.1983;5:229¬34.

Dyck PL, Kerber ER. Aneuploid analysis of a gene for leaf rust resistance derived from the common wheat cultivar Terenzio. Can J Genet Cytol. 1981;23:405-9.

Dyck PL, Kerber ER, Lukow OM. Chromosome location and linkage of a new gene (Lr33) for reaction to Puccinia recondita f. sp. tritici. Genome. 1987;29:463-6.

Dyck PL, Samborski DJ, Anderson RG. Inheritance of adult plant leaf rust resistance derived from the common wheat varieties Exchange and Frontana. Can J Genet Cytol. 1966;8:665-71.

Dyck PL, Samborski DJ. Inheritance of virulence in Puccinia recondita on alleles at the Lr2 locus for resistance in Wheat. Can J Genet Cytol. 1974;16:323-32.

Flor HH. The complementary genetic system in flax and flax rust. Adv Genet. 1956;8:29-54

Galich MT. Enfermedades del trigo en el Área Pampeana Norte y su manejo. Córdoba: INTA EEA Marcos Juárez; 1998. 4p. (Información para extensión; Nº 51).

Germán S, Barcellos A, Chaves M, Kohli M, Campos P, Viedma L. The situation of common wheat rusts in the Southern Cone of America and perspectives for control. Aust J Agric Res. 2007;58:620-30.

Germán S, Díaz M, Pereyra S. Royas y oídio de trigo y cebada. In: Pereyra S, Díaz M, Germán S, Cabrera K. Manejo de enfermedades en trigo y cebada. Montevideo: INIA; 2011. p. 159-89.

Germán S. Genetics of Leaf Rust Resistance of Selected Uruguayan Wheat Cultivars [doctoral’s thesis]. Manitoba (CA): University of Manitoba; 1996. 135p.

Germán SE, Kolmer JA. Effect of gene Lr34 in the enhancement of resistance to leaf rust of wheat. Theor Appl Genet. 1992;84(1):97-105.

Germán SE, Kolmer JA. Leaf rust resistance in selected late maturity, common wheat cultivars from Uruguay. Euphytica. 2014;195:57-67.

Germán SE, Kolmer JA. Leaf Rust Resistance in Selected Uruguayan Common Wheat Cultivars with Early Maturity. Crop Sci. 2012;25:601-8.

Haggag MEA, Dyck PL. The inheritance of leaf rust resistance in four common wheat varieties possessing genes at or near the Lr3. Can J Genet Cytol. 1973;15(1):127-34.

Herrera-Foessel SA, Singh RP, Huerta-Espino J, Rosewarne GM, Periyannan SK, Viccars L, Calvo-Salazar V, Lan C, Lagudah ES. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet. 2012;124(8):1475-86.

Herrera-Foessel SA, Singh RP, Lillemo M, Huerta-Espino J, Bhavani S, Singh S, Lan C, Calvo-Salazar V, Lagudah ES. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor Appl Genet. 2014;127(4):781-9.

Hiebert CW, Thomas JB, McCallum BD, Humphreys DG, DePauw RM, Hayden MJ, Mago R, Schnippenkoetter W, Spielmeyer W. An introgression on wheat chromosome 4DL in RL6077 (Thatcher*6/PI 250413) confers adult plant resistance to stripe rust and leaf rust (Lr67). Theor Appl Genet. 2010;121:1083-91.

Huerta-Espino J, Singh RP, Villaseñor-Mir HE, Espitia-Rangel E, Leyva-Mir SG. Postulación de Genes de Resistencia a la Roya de la Hoja (Puccinia triticina Ericks.) en Plántula y Planta Adulta en Genotipos Élite de Trigo Harinero (Triticum aestivum). Rev Mex fitopatol. 2003;21(3):239-47.

Huerta–Espino J, Singh RP. Misconceptions on the durability of some adult leaf rust resistance genes in wheat. In: Proceedings of the 9th European and Mediterranean Cereal Rusts & Powdery Mildews Conference; 1996 Sep; Lunteren, Netherlands. Wageningen: IPO; 1996. p. 109-11.

Kohli MM, Cubilla LE, Cabrera G. Del grano al pan: Tercer Seminario Nacional de Trigo. Asunción: CAPECO; 2010. 168p.

Kohli MM, Gérman S. La resistencia genética a enfermedades de trigo en el Cono Sur: panorama pasado, actual y futuro de la roya de la hoja. Paper presented at Jornada Técnica del Manejo integrado de enfermedades en cultivos extensivos; 2003 Sep 16 – 17; Buenos Aires.

Kolmer JA. Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol. 1996;34(1):435-55.

Kolmer JA, Singh RP, Garvin DF, Viccars L, Harinder MW, Huerta-Espino J, Ogbonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES. analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci. 2008;48(5):1841-52.

Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet. 2006;114(1):21-30.

Li Z, Lan C, He Z, Singh RP, Rosewarne GM, Chen X, Xia X. Overview and Application of QTL for Adult Plant Resistance to Leaf Rust and Powdery Mildew in Wheat. Crop Sci. 2014;54(5):1907-25.

Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjornstad A. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet. 2008;116(8):1155-66.

Lillemo M, Joshi AK, Prasad R, Chand R, Singh RP. QTL for spot blotch in bread wheat line Saar co-locate to the biotrophic disease resistance loci Lr34 and Lr46. Theor Appl Genet. 2013;126(3):711-9.

Lillemo M, Singh RP, William M, Herrera-Foessel S, Huerta-Espino J, Germán S, Campos P, Chaves M, Madariaga R, Xia XC, Liang SS, Liu D, Li ZF, Lagudah ES. Multiple rust resistance and gene additivity in wheat: lessons from multi-location case studies in the cultivars Parula and Saar. In: Borlaug Global Rust Initiative: 2011 Technical Workshop [Internet]. [place unknown]: BGRI; 2011 [cited 2022 Nov 14]. p. 111-20. Available from: http://bit.ly/3hvgtO2.

Loegering WQ, Mcintosh RA, Coleman H, Burton CH. Compute analysis of disease data to derive hypothetical genotypes for reaction of host varieties to pathogens. Can J Genet Cytol. 1971;13(4):742-8.

Long DL, Kolmer JA. A North American System of Nomenclature for Puccinia recondita f. sp. tritici. Phytopathology. 1989;79:525-9.

MAS wheat. Leaf rust resistance genes [Internet]. Davis: University of California; 2021 [cited 2022 Dec 1]. Available from: https://bit.ly/3ufIo7P.

McIntosh RA, Dubcovsky J, Rogers W, Morris C, Appels R, Xia XC. Catalogue of gene symbols for wheat: 2013–2014 supplement [Internet]. [place unknown: publisher unknown]; 2013 [cited 2022 Dec 1]. 31p. Available from: https://bit.ly/3ue9Mmy.

McIntosh RA, Wellings CR, Park RF. Wheat rusts: an atlas of resistance genes. Australia: CSIRO; 1995. 178p.

Navabi A, Tewari JP, Singh RP. Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum ‘Cook’. Genome. 2005;48(1):97-107.

Parlevliet JE. Partial resistance of barley to leaf rust, Puccinia hordei: I. Effect of cultivar and development stage on latente period. Euphytica. 1975;24(1):21-7.

Peterson RF, Campbell AB, Hannah AE. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res. 1948;26(5):496-500.

Quintana de Viedma L. Roya de la hoja en trigo. ABC [Internet]. 2009 Aug 11 [cited 2022 Nov 25]. Available from: http://bit.ly/3TZWFQA.

Roelfs AP, Singh RP, Saari EE. Las royas del trigo: conceptos y métodos para el manejo de esas enfermedades. México: CIMMYT; 1992. 81p.

Samborski DJ, Dyck PL. Inheritance of virulence in Puccinia recondita on six backcross lines of wheat single genes for resistance to leaf rust. Can J Bot. 1976;54(14):1666-71.

Scholz R, Pereyra S, García R, Germán S. Identificación de razas de roya de la hoja del trigo presentes en Uruguay durante 2011-2012. Agrociencia (Uruguay). 2019;23(1):28-36.

Sears ER. The transfer of leaf rust resistance from Aegilops umbellulata into wheat. In: Genetics in Plant Breeding: Report of Symposium Held May 21 to 23, 1956. Upton: Brookhaven National Laboratory; 1956. p. 1-21.

Silva P, Calvo-Salazar V, Condón F, Quincke M, Pritsch C, Gutiérrez L, Castro A, Herrera-Foessel S, von Zitzewitz J, Germán S. Effects and interactions of genes Lr34, Lr68 and Sr2 on wheat leaf rust adult plant resistance in Uruguay. Euphytica. 2015;204(3):599-608.

Singh D, McIntosh RA, Park RF. Characterization of wheat leaf rust resistance gene Lr34 in Australian wheats using components of resistance and the linked molecular marker csLV34. Aust J Agric Res. 2007;58(11):1106-14

Singh RP. Genetic association of leaf rust resistance gene Lr34 with adult plant resistance to stripe rust in bread wheat. Phytopathology. 1992;82:835.

Singh RP. Pros and cons of utilizing major, race-specific resistance genes versus partial resistance in breeding rust resistant wheat. In: Borlaug Global Rust Initiative: 2012 Technical Workshop; 2012 Sep 1-4; Beijing, China [Internet]. [place unknown]: BGRI; 2012 [cited 2022 Nov 14]. p. 57-65. Available from: http://bit.ly/3hvabOq.

Singh RP. Resistance to Leaf Rust in 26 Mexican Wheat Cultivars. Crop Sci. 1993;33(3):633-7.

Singh RP, Herrera-Foessel SA, Huerta-Espino J. Lr34/Yr18/Sr57/Pm38/Bdv1/Ltn1 confers slow rusting, adult plant resistance to Puccinia graminis tritici. In: Disease risk and Food Security. 13th Cereal Rust and Powdery Mildew Conference; 2012 Aug 28 - Sep 1. Beijin: China Agricultural Science and Technology Publishing; 2012. p. 173.

Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J. Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica. 2011;179(1):175-86.

Singh RP, Huerta-Espino J. Effect of leaf rust resistance gene Lr34 on components of slow rusting at seven growth stages in wheat. Euphytica. 2003;129(3):371-6.

Singh RP, Mujeeb-Kazi A, Huerta-Espino J. Lr46: a gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology. 1998;88(9):890¬4.

Singh RP, Rajaram S. Genetics of adult-plant resistance to leaf rust in ‘Frontana’ and three CIMMYT wheats. Genome. 1992;35(1):24-31

Singh RP, Rajaram S. Resistance to Puccinia recondita f. sp. tritici in 50 Mexican bread wheat cultivars. Crop Sci. 1991;31(6):1472-9

Spielmeyer W, McIntosh RA, Kolmer JA, Lagudah ES. Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet. 2005;111(4):731-5.

Stakman EC, Stewart DM, Loegering WQ. Identification of physiologic races of Puccinia graminis var. tritici. Washington: USDA; 1962. 53p.

Vanzetti LS, Campos P, Demichelis M, Lombardo LA, Aurelia PR, Vaschetto LM, Bainotti CT, Helguera M. Identification of leaf rust resistance genes in selected Argentinean bread wheat cultivars by gene postulation and molecular markers. Electron J Biotechnol. 2011;14(3):1-17.

Villaseñor-Espín OM, Huerta-Espino J, Leyva-Mir SG, Villaseñor-Mir E, Espitia-Rangel E. Análisis de virulencia de la roya de la hoja (Puccinia triticina Eriks.) del trigo (Triticum aestivum L.) en los Valles Altos de México. Rev Mex fitopatol. 2003;21(1):56-62.

Zoldán SM, Barcellos AL. Postulação de genes (Lr) de resistência a ferrugem da folha em cultivares brasileiras de trigo. Fitopatol bras. 2002;27(5):508-16.

Publicado

2023-03-27

Cómo citar

1.
Scholz R, Pereyra S, Silva P, Germán S. Resistencia a roya de la hoja en cultivares y líneas de trigo de Paraguay. Agrocienc Urug [Internet]. 27 de marzo de 2023 [citado 16 de mayo de 2024];27:e997. Disponible en: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/997

Número

Sección

Protección vegetal
QR Code

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Artículos más leídos del mismo autor/a