Fungicide strategies for Ramularia Leaf Spot control recommended in Uruguay and its residues in barley grains




Ramularia collo-cygni, Hordeum vulgare, food safety, pesticide residues, control efficacy


Ramularia leaf spot (RLS) is primarily managed by foliar fungicide spraying, which can result in residues in the grain. In recent years, increasing attention has been paid to the risks these residues pose to consumers. This study aimed to evaluate the efficacy of fungicide management used for RLS control and their fungicide residues in barley grain. Four different alternatives of fungicide mixtures: fluxapyroxad + pyraclostrobin + epoxiconazole; pyraclostrobin + epoxiconazole + chlorothalonil; prothioconazole + trifloxystrobin, and isopyrazam + azoxystrobin, in three spray timings: GS33, GS47 and GS33+GS47, were evaluated in five field experiments. An untreated and a fully protected treatment were included. Fungicide residues, disease severity, control efficacy, area under the disease progress curve, and plump grain yield were calculated. All fungicide strategies adhered to food safety, complying with the Maximum Residue Limits established by Codex and the European Union. Effectiveness varied based on RLS development, application time, and number of applications. Fungicide treatments applied at GS33+GS47 were the most effective as the highest severity levels were observed at the stage after GS47 under the conditions studied. Plump grain yield only showed minimal differences in the late epidemic. The study emphasized the low risk of fungicide presence in grains, favoring efficacy when selecting RLS management options. Any changes in management or regulations should be carefully reviewed to maintain findings. The research underscored the compatibility of recommended fungicide treatments with food safety standards, highlighting the balance between disease control efficacy and consumer safety.


Download data is not yet available.


Abbott WS. A method of computing the effectiveness of an insecticide. J Econ Entomol. 1925;18:265-7. DOI:

Bajwa U, Sandhu KS. Effect of handling and processing on pesticide residues in food- a review. J Food Sci Technol. 2014;51:201-20. Doi: 10.1007/s13197-011-0499-5. DOI:

Bedos C, Cellier P, Calvet R, Barriuso E, Gabrielle BT. Mass transfer of pesticides into the atmosphere by volatilization from soils and plants: overview. Agronomie. 2002;1:21-33. Doi: 10.1051/agro:2001003. DOI:

Bidegain MP, Bogliaccini A, Chiaravalle W, Ernst O, Fernández G, Martínez I, Pereyra S, Pippolo D, Sawchik J, Cantou G. Guía de buenas prácticas agrícolas para sistemas con agricultura de secano en Uruguay. Montevideo: MGAP; 2013. 53p.

Campbell CL, Madden LV. Introduction to Plant Disease epidemiology. New York: Willey; 1990. 532p.

Castro M, Pereyra S, German S. Resultados experimentales de la evaluación nacional de cultivares de cebada cervecera de los tres últimos años: período 2018-2019-2020. La Estanzuela: INIA, 2021 [cited 2023 Dec 18]. 79p. Available from:

Commission of the European Communities, Directorate General for Agriculture. Appendix B: General recommendations for the design, preparation and realization of residue trials [Internet]. 1997 [cited 2023 Dec 18]. 72p. 7029/VI/95 rev.5. Available from:

Da Luz SR, Pazdiora PC, Dallagnol LJ, Dors GC, Chaves FC. Mycotoxin and fungicide residues in wheat grains from fungicide-treated plants measured by a validated LC-MS method. Food Chem. 2017;220:510-6. Doi: 10.1016/j.foodchem.2016.09.180. DOI:

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. InfoStat [Internet]. Version 2020. Córdoba: Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias; 2020 [cited 2023 Dec 18]. Available from:

Dušek M, Běláková S, Piacentini KC, Jandovská V. Fate and behavior of field-applied pesticides during malting and mashing processes. J Agric Food Chem. 2021;69(31):8649-59. Doi: 10.1021/acs.jafc.1c01120. DOI:

Erreguerena IA, Havis ND, Heick TM, Gorniak K, Quiroz F, Carmona MA. Characterization of DMI, QoI and SDHI fungicides sensitivity of Ramularia collo-cygni isolates in Argentina. J Plant Dis Prot. 2022;129:1343-53. Doi: 10.1007/s41348-022-00645-0. DOI:

European Commission. Commission implementing regulation (EU) 2019/677 of 29 April 2019 concerning the non-renewal of the approval of the active substance chlorothalonil, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market, and amending Commission Implementing Regulation (EU) No 540/2011. Official Journal of the European Communities [Internet]. 2019 [cited 2023 Dec 18]; L 114:15-7. Available from:

European Parliament, Council of the European Union. Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC Text with EEA relevance. Official Journal of the European Communities [Internet]. 2005 [cited 2023 Dec 18]; L 70:1. Available from:

FAO. FAOSTAT [Internet]. Rome: FAO; 2017 [cited 2023 Dec 18]. Available from:

FAO. Límites máximos de residuos (LMR) y recomendaciones sobre la gestión de riesgos (RGR) para residuos de medicamentos veterinarios en los alimentos. In: Codex Alimentarius: normas internacionales de los alimentos [Internet]. Rome: FAO; 2021 [cited 2023 Dec 18]. Available from:

Fountaine JM, Fraaije BA. Development of QoI resistant alleles in populations of Ramularia collo-cygni. Paper presented at The Second European Ramularia (Workshop). 2009, Edinburgh, United Kingdom.

Garrido Frenich A, Martínez Salvador I, Martínez Vidal JL, López-López T. Determination of multiclass pesticides in food commodities by pressurized liquid extraction using GC-MS/MS and LC-MS/MS. Anal Bioanal Chem. 2005;383(7-8):1106-18. Doi: 10.1007/s00216-005-0139-x. DOI:

Harvey I. Epidemiology and control of leaf and awn spot of barley caused by Ramularia collo-cygni. N Z Plant Prot. 2002;55:331-5. DOI:

Havis ND, Brown JK, Clemente G, Frei P, Jedryczka M, Kaczmarek J, Matusinsky P, McGrann GR, Pereyra S, Piotrowska M, Sghyer H, Tellier A, Hess M. Ramularia collo-cygni: an emerging pathogen of barley crops. Phytopathology. 2015;105:895-904. Doi: 10.1094/PHYTO-11-14-0337-FI. DOI:

Havis ND, Gorniak K, Stanisz-Migal M, Creissen HE, Burnett F. Controlling Ramularia leaf spot post chlorothalonil. In: The Dundee Conference: Crop Production in Northern Britain 2020. Dundee: Bayer; 2020. p. 87-92.

Havis ND, Kaczmarek J, Jedryczka M, Hess M, Fang Z. Spore dispersal patterns of the ascomycete fungus Ramularia collo-cygni and their influence on disease epidemics. Aerobiologia. 2023;39:105-18. Doi: 10.1007/s10453-022-09778-z. DOI:

Havis ND, Oxley S, Piper S, Langrell S. Rapid nested PCR –based detection of Ramularia collo-cygni direct from barley. FEMS Microbiol Lett. 2006,256:217-23. DOI:

Hoheneder F, Hofer K, Groth J, Herz M, Heß M, Hückelhoven R. Ramularia leaf spot disease of barley is highly host genotype‑dependent and suppressed by continuous drought stress in the field. J Plant Dis Prot. 2021;128:749-67. Doi: 10.1007/s41348-020-00420-z. DOI:

Hoheneder F, Groth J, Herz M, Hückelhoven R. Artifcially applied late terminal drought stress in the feld diferentially afects Ramularia leaf spot disease in winter barley. J Plant Dis Prot. 2023;130:1357-70. Doi: 10.1007/s41348-023-00790-0. DOI:

Kaczmarek M, Piotrowska MJ, Fountaine JM, Gorniak K, McGrann GRD, Armstrong A, Wright KM, Newton AC, Havis ND. Infection strategy of Ramularia collo-cygni and development of ramularia leaf spot on barley and alternative graminaceous hosts. Plant Pathol. 2016;66:45-55. Doi: 10.1111/ppa.12552. DOI:

Komárek M, Cadková E, Chrastný V, Bordas F, Bollinger J. Contamination of vineyard soils with fungicides: a review of environmental and toxicological aspects. Environ Int. 2010;36:138-51. Doi: 10.1016/j.envint.2009.10.005. DOI:

Laskowski DA. Physical and chemical properties of pyrethroids. Rev Environ Contam Toxicol. 2002;174:49-170. Doi: 10.1007/978-1-4757-4260-2_3. DOI:

Lozowicka B, Kaczynski P, Paritova A, Kuzembekova G, Abzhalieva A, Sarsembayeva NB, Alihan K. Pesticide residues in grain from Kazakhstan and potential health risks associated with exposure to detected pesticides. Food Chem Toxicol. 2014;64:238-48. Doi: 10.1016/j.fct.2013.11.038. DOI:

Malinowska E, Jankowski K, Sosnowski J, Wiśniewska-Kadżajan B. Pesticide residues in cereal crop grains in Poland in 2013. Environ Monit Assess. 2015;187(6):329. Doi: 10.1007/s10661-015-4566-7. DOI:

Marik P, Snejdar Z, Matusinsky P. Expression of resistance to Ramularia leaf spot in winter barley cultivars grown in conditions of the Czech Republic. Czech J Genet Plant Breed. 2011;47:37-40. Doi: 10.17221/34/2010-CJGPB. DOI:

Matusinsky P, Svobodova-Leisova L, Marik P, Tvaruzek L, Stemberkova L, Hanusova M, Minarikova V, Vysohlidova M, Spiter T. Frequency of a mutant allele of cytochrome b conferring resistance to QoI fungicides in the Czech population of Ramularia collo-cygni. J Plant Dis Prot. 2010;117(6):248-52. Doi: 10.1007/BF03356369. DOI:

McGrann GRD, Brown JKM. The role of reactive oxygen in the development of Ramularia leaf spot disease in barley seedlings. Ann Bot. 2018;121(3):415-30. Doi: 10.1093/aob/mcx170. DOI:

McGrann GRD, Havis ND. Ramularia leaf spot: a newly important threat to barley production. Outlooks Pest Manag. 2017;28:65-9. Doi: 10.1564/v28_apr_05. DOI:

Miyake Y, Hashimoto K, Matsuki H, Ono M, Tajima R. Fate of insecticide and fungicide residues on barley during storage and malting. J Am Soc Brew Chem. 2002;60:110-5. Doi: 10.1094/ASBCJ-60-0110. DOI:

Oliva Ortiz J, Payá Peñalver P, Barba Navarro A. Influence of Fungicide residues in wine quality. In: Carise O, editor. Fungicides. Croatia: InTech; 2010. p. 431-548.

Palladino C, Muela A, Taborda B, Puigvert F, Pérez-Parada A, Collazo M, Collazo M, Pérez CA, Pereyra S, Pareja L. Application of a straightforward methodology by LC-QqQ-MS/MS and GC-MS to ensure food safety of barley and wheat grain. Agric Sci Technol. 2022;2(2):371-80. Doi: 10.1021/acsagscitech.1c00263. DOI:

Palladino C, Puigvert F, Muela A, Taborda B, Pérez CA, Pérez-Parada A, Pareja L. Evaluation of Fusarium mycotoxins and fungicide residues in barley grain produced in Uruguay. J Agric Food Res. 2021;3:100092. Doi: 10.1016/j.jafr.2020.100092. DOI:

Pereyra S. Herramientas disponibles para el manejo de dos enfermedades relevantes de la pasada zafra: fusariosis de la espiga en trigo y Ramularia en cebada. In: Jornada de Cultivos de Invierno: herramientas para un manejo inteligente de trigos y cebadas. Montevideo: INIA; 2013. p. 33-41.

Pereyra S, González N. Caracterización de fungicidas evaluados por INIA según su eficiencia para el control de distintas enfermedades en trigo y cebada [Internet]. Montevideo: INIA; [cited 2023 Dec 18]. 2p. Available from:

Pereyra S, Pérez C. Avances y perspectivas para el manejo de ramulariosis en cebada en Uruguay. Cangüe. 2017;38:13-8.

Pérez-Lucas G, Navarro G, Navarro S. Comprehensive review on monitoring, behavior, and impact of pesticide residues during beer-making. J Agric Food Chem. 2023;71(4):1820-36. Doi: 10.1021/acs.jafc.2c07830. DOI:

Piotrowska MJ, Fountaine JM, Ennos RA, Kaczmarek M, Burnett FJ. Characterisation of Ramularia collo-cygni laboratory mutants resistant to succinate dehydrogenase inhibitors. Pest Manag Sci. 2017;73:1187-96. Doi: 10.1002/ps.4442. DOI:

PPDB: Pesticide Properties Database [Internet]. Hertfordshire: University of Hertfordshire; [cited 2023 Dec 19]. Available from:

Rava C. Cebada cervecera y malta: situación y perspectivas. In: Anuario OPYPA 2020 [Internet]. Montevideo: MGAP; 2020 [cited 2023 Dec 18]. p. 153-74. Available from:

Rehfus A, Matusinsky P, Strobel D, Bryson R, Stammler G. Mutations in target genes of succinate dehydrogenase inhibitors and demethylation inhibitors in Ramularia collo-cygni in Europe. J Plant Dis Prot 2019;126(5):447-59. Doi: 10.1007/s41348-019-00246-4. DOI:

Sutton B, Waller J. Taxonomy of Ophicladium hordei causing leaf lesions on Triticale and other Graminae. Trans Br Mycol Soc.1988;90:55-61. DOI:

Taylor J, Paterson L, Havis N. A quantitative real-time PCR assay for the detection of Ramularia collo-cygni from barley (Hordeum vulgare). Lett Appl Microbiol. 2010;50:493-99. DOI:

Walters DR, Havis ND, Sablou C, Walsh DJ. Possible trade-off associated with use of a combination of resistance elicitors. Physiol Mol Plant Pathol. 2011;75:188-92. Doi: 10.1016/j.pmpp.2011.02.001. DOI:

West JS, Townsend JA, Stevens M, Fitt BDL. Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur J Plant Pathol. 2012;133(1):315-31. Doi: 10.1007/s10658-011-9932-x. DOI:

Willis GH, McDowell LL. Pesticide persistence on foliage. In: Ware GW, editor. Reviews of environmental contamination and toxicology. New York: Springer; 1987. p. 23-73. Doi: 10.1007/978-1-4612-4804-0_2. DOI:

Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals. Weed Res. 1974;14:415-21. DOI:

Zamani-Noor N. Studies on ramularia leaf spots on barley- resistance phenotyping, epidemiology and pathogenicity [doctoral’s thesis]. Göttingen (DE): Georg-August-University Göttingen, Faculty of Agricultural Sciences; 2011. 146p. Doi: 10.53846/goediss-4115. DOI:



How to Cite

Palladino C, Pérez CA, Pareja L, Pérez-Parada A, Franco J, Pereyra S. Fungicide strategies for Ramularia Leaf Spot control recommended in Uruguay and its residues in barley grains. Agrocienc Urug [Internet]. 2024 Feb. 1 [cited 2024 Jul. 13];28:e1262. Available from:



Plant protection
QR Code


Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)

1 2 > >>