Genetic selection and livestock sustainability
A review of research and development in Uruguay
DOI:
https://doi.org/10.31285/AGRO.29.1480Keywords:
genomic selection, feed efficiency, enteric methane, cattle, sheepAbstract
Genetic selection is an effective tool to improve sustainability of livestock production and contribute to greenhouse gases mitigation, particularly of enteric methane (CH4) emissions, in accordance with international agreements. Feed efficiency (FE) and CH4 emissions have been postulated as potential selection objectives to achieve mitigation goals and support sustainability. Uruguay has had genetic evaluation systems for three decades and new intensive phenotyping platforms are in place for measuring FE and CH4 in beef cattle and sheep. Recording is carried out in animals of breeds relevant to production (Hereford, Corriedale, Texel, Australian and Dohne Merino) and connected to the genetic evaluation systems. The generated databases are the basis of reference populations for genomic selection. Given that FE and CH4 are difficult-to-measure traits, the implementation of genomic selection is key to accelerate the potentially achievable genetic progress. Recording systems and protocols are described here, as well as the estimated genetic parameters and associations among feed intake, FE, CH4 and productive traits. Knowledge of these associations allows the identification of synergies and antagonisms. This is relevant to optimize genetic improvement programs that contribute to the CH4 mitigation goals, without affecting livestock production, which is key to the economic and social dimensions of livestock sustainability.
Downloads
References
Amarilho-Silveira F, de Barbieri I, Cobuci JA, Balconi CM, de Ferreira GF, Ciappesoni G. Residual feed intake for Australian Merino sheep estimated in less than 42 days of trial. Lives Sci. 2022;258:104889. Doi: 10.1016/j.livsci.2022.104889. DOI: https://doi.org/10.1016/j.livsci.2022.104889
Barwick SA, Henzell AL, Herd RM, Walmsley BJ, Arthur PF. Methods and consequences of including reduction in greenhouse gas emission in beef cattle multiple-trait selection. Genet Sel Evol. 2019;51(1):18. Doi: 10.1186/s12711-019-0459-5. DOI: https://doi.org/10.1186/s12711-019-0459-5
Basarab JA, Colazo MG, Ambrose DJ, Novak S, McCartney D, Baron VS. Residual feed intake adjusted for backfat thickness and feeding frequency is independent of fertility in beef heifers. Can J Anim Sci. 2011;91(4):573-84. Doi: 10.4141/cjas2011-010. DOI: https://doi.org/10.4141/cjas2011-010
Basarab JA, Price MA, Aalhus JL, Okine EK, Snelling WM, Lyle KL. Residual feed intake and body composition in young growing cattle. Can J Anim Sci. 2003;83(2):189-204. Doi: 10.4141/A02-065. DOI: https://doi.org/10.4141/A02-065
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Current enteric methane mitigation options. J Dairy Sci. 2022;105(12):9297-326. Doi: 10.3168/jds.2022-22091. DOI: https://doi.org/10.3168/jds.2022-22091
Berry DP, Garcia JF, Garrick DJ. Development and implementation of genomic predictions in beef cattle. Anim Front. 2016;6:32-8. Doi: 10.2527/af.2016-0005. DOI: https://doi.org/10.2527/af.2016-0005
Blumetto O, De Barbieri I, Navajas E, Baethgen W, Vera B, Becoña G, Ciappesoni G. Regenerative livestock farming in Uruguay. Montevideo: INIA; 2023. 23p.
Cantalapiedra-Hijar G, Abo-Ismail M, Carstens GE, Guan LL, Hegarty R, Kenny DA, McGee M, Plastow G, Relling A, Ortigues-Marty I. Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal. 2018;12(s2):s321-s335. Doi: 10.1017/S1751731118001489. DOI: https://doi.org/10.1017/S1751731118001489
Carracelas B, Peraza P, Vergara A, Ciappesoni G, Ravagnolo O, Aguilar I, Lema M, Navajas E. Banco de ADN genómico animal - plataforma de evaluación genómica. Revista INIA. 2022;(71):38-42.
Ciganda V, Santander D. Mitigación de emisiones de metano entérico. In: Jornada de porteras abiertas de ganadería intensiva: herramientas para una ganadería productiva y eficiente. Montevideo: INIA; 2023. p. 21-7.
De Barbieri I, Ferreira G, Ramos Z, Navajas E, Ciappesoni G. Consequences of contrasting feed efficiency as lamb on later ewe performance. In: Book of Abstracts of the 73rd Annual Meeting of the European Federation of Animal Science. Wageningen: Wageningen Academic Publishers; 2022. p. 674.
De Barbieri I, Navajas E, Giorello D, Velazco J, Banchero G, Rodriguez B, Rovira F, Ciappesoni G. Association between feed efficiency and methane emissions, performance and health in Merino sheep. In: Book of Abstracts of the 71st Annual Meeting of the European Federation of Animal Science. Wageningen: Wageningen Academic Publishers; 2020. p. 560.
Devincenzi T, Lema M, Navajas E. Genética de eficiencia de conversión: crecimiento y performance reproductiva de hembras del Núcleo Informativo Hereford de INIA Glencoe. In: Anuario Hereford [Internet]. Montevideo: Sociedad Criadores de Hereford del Uruguay; 2024 [cited 2025 Jun 10]. p. 267-9. Available from: https://www.hereford.org.uy/anuario-hereford-2024-11?nid=319
Dini Y, Gere JI, Cajarville C, Ciganda VS. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in South America. Anim Prod Sci. 2017;58:2329-34. Doi: 10.1071/AN16803. DOI: https://doi.org/10.1071/AN16803
Dressler EA, Bormann JM, Weaber RL, Rolf MM. Use of methane production data for genetic prediction in beef cattle: a review. Transl Anim Sci. 2024;8:txae014. Doi: 10.1093/tas/txae014. DOI: https://doi.org/10.1093/tas/txae014
FAO. Methane emissions in livestock and rice systems: sources, quantification, mitigation and metrics. Rome: FAO; 2023. 313p. Doi: 10.4060/cc7607en. DOI: https://doi.org/10.4060/cc7607en
Ferreira GF, Ciappesoni G, Castells D, Amarilho-Silveira F, Navajas EA, Giorello D, De Barbieri I. Feed conversion efficiency in sheep genetically selected for resistance to gastrointestinal nematodes. Anim Prod Sci. 2021;61(8):754-60. Doi: 10.1071/AN20121. DOI: https://doi.org/10.1071/AN20121
Fouts JQ, Honan MC, Roque BM, Tricarico JM, Kebreab E. Enteric methane mitigation interventions. Transl Anim Sci. 2022;6(2):txac041. Doi: 10.1093/tas/txac041. DOI: https://doi.org/10.1093/tas/txac041
Ganadería y Clima. Informe final: análisis del impacto del proyecto en los 60 predios, en las dimensiones económico productiva, social y de género, y ambiental [Internet]. Montevideo: MGAP; 2023 [cited 2025 Jun 10]. 120p. Available from: https://bit.ly/4kBU51i
Goopy JP, Robinson DL, Woodgate RT, Donaldson AJ, Oddy VH, Vercoe PE, Hegarty RS. Estimates of repeata-bility and heritability of methane production in sheep using portable accumulation chambers. Anim Prod Sci. 2016;56(1):116-22. Doi: 10.1071/AN13370. DOI: https://doi.org/10.1071/AN13370
Goopy JP, Woodgate R, Donaldson A, Robinson DL, Hegarty RS. Validation of a short-term methane measurement using portable static chambers to estimate daily methane production in sheep. Anim Feed Sci Technol. 2011;166-167:219-26. Doi: 10.1016/j.anifeedsci.2011.04.012. DOI: https://doi.org/10.1016/j.anifeedsci.2011.04.012
Greenwood PL. An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal. 2021;15 Suppl 1:100295. Doi: 10.1016/j.animal.2021.100295. DOI: https://doi.org/10.1016/j.animal.2021.100295
Herd RM, Arthur PF, Bottema CDK, Egarr AR, Geesink GH, Lines DS, Piper S, Siddell JP, Thompson JM, Pitchford WS. Genetic divergence in residu-al feed intake affects growth, feed efficiency, carcass and meat quality characteristics of Angus steers in a large commercial feedlot. Anim Prod Sci. 2014;58:164-74. Doi: 10.1071/AN13065. DOI: https://doi.org/10.1071/AN13065
Instituto Nacional de Carne. Informe Anuario estadístico 2022 [Internet]. 2023 [cited 2025 Jun 10]. 48p. Available from: https://www.inac.uy/innovaportal/file/23151/1/anuario-estadistico-2022-analsis-de-cifras.pdf
Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73(8):2483-92. Doi: 10.2527/1995.7382483x. DOI: https://doi.org/10.2527/1995.7382483x
Kennedy BW, van der Werf JH, Meuwissen TH. Genetic and statistical properties of residual feed intake. J Anim Sci. 1993;71(12):3239-50. Doi: 10.2527/1993.71123239x. DOI: https://doi.org/10.2527/1993.71123239x
Koch RM, Swiger LA, Chambers D, Gregory KE. Efficiency of feed use in beef cattle. J Anim Sci. 1963;22:486-94. Doi: 10.2527/jas1963.222486x. DOI: https://doi.org/10.2527/jas1963.222486x
Luzardo S, de Souza G, Brito G, Peraza P, Navajas E. Is residual feed intake associated to carcass and meat quality traits? In: 70th International Congress of Meat Science and Technology [Internet]. Foz do Iguaçu: Funpec Editora; 2024 [cited 2025 Jun 10]. p. 107-8. Available from: https://www.icomst2024.com/wp-content/uploads/2024/09/ICoMST_2024_Proceedings.pdf
Marín MF, Naya H, Espasandin AC, Navajas E, Devincenzi T, Carriquiry M. Energy efficiency, reproductive performance, and metabolic parameters of grazing Hereford heifers. Livest Sci. 2024;279:105389. Doi: 10.1016/j.livsci.2023.105389. DOI: https://doi.org/10.1016/j.livsci.2023.105389
Marques C, Ciappesoni G, Velazco J, Navajas E, Ferreira G, Ramos Z, Rovira F, De Barbieri I. Evaluation of different mod-els to define a more suitable residual feed intake estimation in sheep. In: Book of Abstracts of the 72nd Annual Meeting of the European Federation of Animal Science. Wageningen: Wageningen Academic Publishers; 2021. p. 115.
Marques CB, De Barbieri I, Velazco J, Navajas EA, Ciappesoni G. Genetic parameters for feed efficiency, gas emissions, oxygen consumption and wool traits in Australian Merino. In: Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Wageningen: Wageningen Academic Publishers; 2022. p. 160-3. DOI: https://doi.org/10.3920/978-90-8686-940-4_28
Marzocchi MZ, Sakamoto LS, Canesin RC, Dos Santos Gonçalves Cyrillo J, Mercadante MEZ. Evaluation of test duration for feed efficiency in growing beef cattle. Trop Anim Health Prod. 2020;52(4):1533-9. Doi: 10.1007/s11250-019-02161-0. DOI: https://doi.org/10.1007/s11250-019-02161-0
Ministerio de Ambiente (UY). Sexta comunicación nacional: a la Conferencia de las Partes en la Convención Marco de las Naciones Unidas sobre el Cambio Climático [Internet]. Montevideo: MA; 2023 [cited 2025 Jun 10]. 312p. Available from: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/documentos/publicaciones/6CN-2023-COMPLETA.pdf
Navajas E, Ciappesoni G, Gimeno D, Velazco J, De Barbieri I. Association of genetic resistance to internal nematodes and production traits on feed efficiency and methane emissions in Corriedale lambs. In: Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Rotterdam: Wageningen Academic Publishers; 2022. p. 195-8. DOI: https://doi.org/10.3920/978-90-8686-940-4_37
Navajas EA, Ravagnolo O, De Barbieri I, Pravia MI, Aguilar I, Lema MO, Vera B, Peraza P, Marques CB, Velazco JI, Ciappesoni G. Genetic selection of feed efficiency and methane emissions in sheep and cattle in Uruguay: progress and limitations. In: Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Rotterdam: Wageningen Academic Publishers; 2022. p. 164-7. DOI: https://doi.org/10.3920/978-90-8686-940-4_29
Paganoni B, Rose G, Macleay C, Jones C, Brown DJ, Kearney G, Ferguson M, Thompson AN. More feed efficient sheep produce less methane and carbon dioxide when eating high-quality pellets. J Anim Sci. 2017;95(9):3839-50. Doi: 10.2527/jas2017.1499. DOI: https://doi.org/10.2527/jas.2017.1499
Peraza P, Navajas E. Consumo de alimento, emisiones de metano y producción: rol de la eficiencia de conversión. In: Anuario Hereford [Internet]. Montevideo: Sociedad Criadores de Hereford del Uruguay; 2024 [cited 2025 Jun 10]. p. 262-4. Available from: https://www.hereford.org.uy/anuario-hereford-2024-11?nid=319
Pravia MI, Navajas EA, Aguilar I, Ravagnolo O. Evaluation of feed efficiency traits in different Hereford populations and their effect on variance component estimation. Anim Prod Sci. 2022;62(17):1652-60. Doi: 10.1071/AN21420. DOI: https://doi.org/10.1071/AN21420
Pravia MI, Navajas EA, Aguilar I, Ravagnolo O. Prediction ability of an alternative multi-trait genomic evaluation for residual feed intake. J Anim Breed Genet. 2023;140(5):508-18. Doi: 10.1111/jbg.12775. DOI: https://doi.org/10.1111/jbg.12775
Pravia MI, Navajas EA, Macedo FL, Clariget J, Luzardo S. Association between feed efficiency and carcass and meat quality traits in Hereford steers. In: 11th World Congress on Genetics Applied to Livestock Production. Auckland: WCGALP; 2018. p. 604
Ravagnolo O, Aguilar I, Ciappesoni G, Navajas EA. Investigación y aplicación de la mejora genética animal para una producción ganadera más sostenible. In: Aportes científicos y tecnológicos del Instituto Nacional de Investigación Agropecuaria (INIA) del Uruguay a las trayectorias agroecológicas. Buenos Aires: Fundación CICCUS; 2023. p. 373-94.
Ravagnolo O, Aguilar I, Crowley JJ, Pravia MI, Lema M, Macedo FL, Scott S, Navajas EA. Accuracy of genomic predictions of residual feed intake in Hereford with Uruguayan and Canadian training populations. In: 11th World Congress on Genetics Applied to Livestock Production. Auckland: WCGALP; 2018. p. 723.
República Oriental del Uruguay. Primera contribución determinada a nivel nacional al acuerdo de parís [Internet]. 2017 [cited 2025 Mar 26]. 29p. Available from: https://www.gub.uy/ministerioambiente/sites/ministerioambiente/files/202104/Uruguay_Primera_Contribucion_Determinada_a_nivel_Nacional_0.pdf
República Oriental del Uruguay. Segunda contribución determinada a nivel nacional al acuerdo de París [Internet]. 2022 [cited 2025 Jun 10]. 94p. Available from: https://bit.ly/3ZUJndQ
Robinson DL, Dominik S, Donaldson AJ, Oddy VH. Repeatabilities, heritabilities and correlations of methane and feed intake of sheep in respiration and portable chambers. Anim Prod Sci. 2020;60(7):880-92. Doi: 10.1071/AN18383. DOI: https://doi.org/10.1071/AN18383
Rowe SJ, Hickey SM, Johnson PL, Bilton TP, Jonker A, Bain W, Veenvliet B, Pile G, Bryson B, Knowler K, Amyes NC, Newman SA, McEwan JC. The contribution animal breeding can make to industry carbon neutrality goals. In: Proceedings of the Twenty-fourth Conference [Internet]. Armidale: AAABG; 2021 [cited 2025 Jun 10]. p. 15-8. Availble from: https://www.aaabg.org/aaabghome/AAABGproceedings24book.pdf
Santander D, Clariget J, Banchero G, Alecrim F, Simon Zinno C, Mariotta J, Gere J, Ciganda VS. Beef steers and enteric methane: reducing emissions by managing forage diet fiber content. Animals (Basel). 2023;13(7):1177. Doi: 10.3390/ani13071177. DOI: https://doi.org/10.3390/ani13071177
Silveira Arburúas MB. Asociación de eficiencia de conversión del alimento con otras características de importancia económica y ambiental en la producción de carne [master's thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2023. 114p.
Smith PE, Kelly AK, Kenny DA, Waters SM. Enteric methane research and mitigation strategies for pastoral-based beef cattle production systems. Front Vet Sci. 2022;9:958340. Doi: 10.3389/fvets.2022.958340. DOI: https://doi.org/10.3389/fvets.2022.958340
Tedeschi LO, Abdalla AL, Álvarez C, Anuga SW, Arango J, Beauchemin KA, Becquet P, Berndt A, Burns R, De Camillis C, Chará J, Echazarreta JM, Hassouna M, Kenny D, Mathot M, Mauricio RM, McClelland SC, Niu M, Onyango AA, Parajuli R, Pereira LGR, Del Prado A, Paz Tieri M, Uwizeye A, Kebreab E. Quantification of methane emitted by ruminants: a review of methods. J Anim Sci. 2022;100(7):skac197. Doi: 10.1093/jas/skac197. DOI: https://doi.org/10.1093/jas/skac197
United Nations Environment Programme; Climate and Clean Air Coalition. Global Methane Assessment: benefits and costs of mitigating methane emissions [Internet]. Nairobi: United Nations; 2021 [cited 2025 Jun 10]. 172p. Available from: https://www.ccacoalition.org/sites/default/files/resources//2021_Global-Methane_Assessment_full_0.pdf
Uruguay XXI. Livestock sector in Uruguay [Internet]. 2024 [cited 2025 Jun 10]. 40p. Available from: https://www.uruguayxxi.gub.uy/en/information-center/article/livestock-report-2024/#
Velazco J. Cuantificación de metano entérico en Kiyú: la bolilla que faltaba. In: Anuario Hereford [Internet]. Montevideo: Sociedad Criadores de Hereford del Uruguay; 2022 [cited 2025 Jun 10]. p. 178-82. Available from: https://issuu.com/hubmediauy/docs/issuu_-_anuario_hereford_2022
Vera B, Navajas E, De Barbieri I, van Lier E, Ciappesoni G. Predicciones genómicas para rasgos productivos y de valor ambiental en ovinos Merino Australiano. In: XI Congreso Biotecnología productiva y sostenible. Yucatán: REDBIO; 2022. p. 122.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Agrociencia Uruguay

This work is licensed under a Creative Commons Attribution 4.0 International License.
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |