Identification of sheep robust to climate change and variability

Authors

DOI:

https://doi.org/10.31285/AGRO.29.1477

Keywords:

resilience, robustness, methane, feed efficiency, phenomics

Abstract

Livestock production, in particular sheep farming, faces the challenge of increasing food production in the context of limited resources, with less access to arable land and supplements. In addition, explained by variability and climate change, access to high-quality and quantity pastures and water would be soon restricted. Furthermore, sheep will be more frequently and for longer periods exposed to higher temperatures, to changes in the rainfall pattern and to a scenario of pests and diseases different from the current one. Moreover, considering that sheep have been selected for improved production for a long period of time, it is possible that modern sheep are less robust. There are also society's concerns about livestock farming contribution to methane emissions, animal welfare, food/feed competition, food security and safety, and antiparasitic and antimicrobial resistance. To face this scenario, more efficient, resilient, and adapted animals are needed. The present work aims to review the concepts of robustness, resilience and efficiency, and present studies on these characteristics within breeds and/or breeds that could be considered in the sheep genetic improvement programs for a scenario of climate change and variability.

Downloads

Download data is not yet available.

References

Abella I, Cardellino RC, Mueller J, Cardellino RA, Benítez D, Lira R. South American sheep and wool industries. In: Cottle D, editor. International sheep and wool handbook. Nottingham: Nottingham University Press; 2010. p. 85-94. DOI: https://doi.org/10.7313/UPO9781907284595.006

Aleri JW, Hine BC, Pyman MF, Mansell PD, Wales WJ, Mallard B, Fisher AD. Assessing adaptive immune response phenotypes in Australian Holstein-Friesian heifers in a pasture-based production system. J Anim Sci. 2015;93(7):3713-21. Doi: 10.2527/jas.2015-9078. DOI: https://doi.org/10.2527/jas.2015-9078

Amarilho-Silveira F, De Barbieri I, Cobuci JA, Balconi C, Ferreira G, Ciappesoni G. Residual feed intake for Australian Merino sheep estimated in less than 42 days of trial. Livest Sci. 2022;258:104889. Doi: 10.1016/j.livsci.2022.104889. DOI: https://doi.org/10.1016/j.livsci.2022.104889

Anand R, Kurmi R, Kumar R. Revolutionizing animal agriculture through precision livestock technology. Agriculture and Food. 2023;5:432-4.

Arndt SS, Goerlich VC, van der Staay FJ. A dynamic concept of animal welfare: the role of appetitive and adverse internal and external factors and the animal’s ability to adapt to them. Front Anim Sci. 2022;3:908513. Doi: 10.3389/fanim.2022.908513. DOI: https://doi.org/10.3389/fanim.2022.908513

Balconi Marques C, Goldberg V, Ciappesoni G. Genetic parameters for production traits, resistance and resilience to Nematode parasites under different worm burden challenges in Corriedale sheep. Vet Parasitol. 2020;287:109272. Doi: 10.1016/j.vetpar.2020.109272. DOI: https://doi.org/10.1016/j.vetpar.2020.109272

Beef + Lamb New Zealand Genetics. Low input sheep progeny test [Internet]. Dunedin: Beef + Lamb New Zealand Genetics; 2021 [cited 2025 Apr 29]. 34p. Available from: https://www.blnzgenetics.com/files/1632459786_Low%20Input%20Public%20Report%20-%20Sept2021.pdf

Benavides MV, Sonstegard TS, Van Tassell C. Genomic regions associated with sheep resistance to gastrointestinal nematodes. Trends Parasitol. 2016;32(6):470-80. Doi: 10.1016/j.pt.2016.03.007. DOI: https://doi.org/10.1016/j.pt.2016.03.007

Berghof TVL, Poppe M, Mulder HA. Opportunities to improve resilience in animal breeding programs. Front Genet. 2019;9:692. Doi: 10.3389/fgene.2018.00692. DOI: https://doi.org/10.3389/fgene.2018.00692

Berton MP, de Oliveira Silva RM, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gavinã BV, Toro MA, Banchero G, Oliveira PS, Eler JP, Baldi F, Ferraz JBS. Genomic regions and pathways associated with gastrointestinal parasites resistance in Santa Inês breed adapted to tropical climate. J Anim Sci Biotechnol. 2017;8:73. Doi: 10.1186/s40104-017-0190-4. DOI: https://doi.org/10.1186/s40104-017-0190-4

Bolormaa S, Swan AA, Stothard P, Khansefid M, Moghaddar N, Duijvesteijn N, van der Werf JHJ, Daetwyler HD, MacLeod IM. A conditional multi-trait sequence GWAS discovers pleiotropic candidate genes and variants for sheep wool, skin wrinkle and breech cover traits. Genet Sel Evol. 2021;53(1):58. Doi: 10.1186/s12711-021-00651-0. DOI: https://doi.org/10.1186/s12711-021-00651-0

Brito LF, Oliveira HR, McConn BR, Schinckel AP, Arrazola A, Marchant-Forde JN, Johnson JS. Large-scale phenotyping of livestock welfare in commercial production systems: a new frontier in animal breeding. Front Genet. 2020;11:793. Doi: 10.3389/fgene.2020.00793. DOI: https://doi.org/10.3389/fgene.2020.00793

Bunch TD, Evans RC, Wang S, Brennand CP, Whittier DR, Taylor BJ. Feed efficiency, growth rates, carcass evaluation, cholesterol level and sensory evaluation of lambs of various hair and wool sheep and their crosses. Small Rumin Res. 2004;52:239-45. Doi: 10.1016/j.smallrumres.2003.07.001. DOI: https://doi.org/10.1016/j.smallrumres.2003.07.001

Burke JM, Miller JE. Relative resistance to gastrointestinal nematode parasites in Dorper, Katahdin, and St. Croix lambs under conditions encountered in the southeastern region of the United States. Small Rumin Res. 2004;54:43-51. Doi: 10.1016/j.smallrumres.2003.10.009. DOI: https://doi.org/10.1016/j.smallrumres.2003.10.009

Can we find a better way to compare sheep performance? Beyond the Bale. 2021;86:44-6.

Can we find a better way to compare sheep performance and profitability on a per hectare basis? Beyond the Bale. 2022;90:44-5.

Cantalapiedra-Hijar G, Abo-Ismail M, Carstens GE, Guan LL, Hegarty R, Kenny DA, McGee M, Plastow G, Relling A, Ortigues-Marty I. Biological determinants of between-animal variation in feed efficiency of growing beef cattle. Animal. 2018;12(s2):s321-s335. Doi: 10.1017/S1751731118001489. DOI: https://doi.org/10.1017/S1751731118001489

Carracelas B, Navajas EA, Vera B, Ciappesoni G. Genome-wide association study of parasite resistance to gastrointestinal nematodes in Corriedale sheep. Genes (Basel). 2022;13(9):1548. Doi: 10.3390/genes13091548. DOI: https://doi.org/10.3390/genes13091548

Chay-Canul AJ, Aguilar-Urquizo E, Parra-Bracamonte GM, Piñeiro-Vazquez ÁT, Sanginés-García JR, Magaña-Monforte JG, García-Herrera RA, López-Villalobos N. Ewe and lamb pre-weaning performance of Pelibuey and Katahdin hair sheep breeds under humid tropical conditions. Ital J Anim Sci. 2019;18:850-7. Doi: 10.1080/1828051X.2019.1599305. DOI: https://doi.org/10.1080/1828051X.2019.1599305

Ciappesoni G, Gimeno D, Coronel F. Progreso genético logrado en las evaluaciones ovinas del Uruguay. Arch Latinoam Prod Anim. 2014;22:73-80.

Ciappesoni G, Marques C, Navajas E, Peraza P, Carracelas B, Vera B, De Barbieri I, Salada S, Castells D, Monzalvo C. Breeding for sheep parasite resistance in extensive production systems in Uruguay: from phenotype to genotype. In: Viljoen G, Garcia Podesta M, Boettcher P, editors. International Symposium on Sustainable Animal Production and Health-Current status and way forward. Rome: FAO; 2023. p. 224-36.

Cockrum RR, Stobart RH, Lake SL, Cammack KM. Phenotypic variation in residual feed intake and per-formance traits in rams. Small Rumin Res. 2013;113:313-2. Doi: 10.1016/j.smallrumres.2013.05.001. DOI: https://doi.org/10.1016/j.smallrumres.2013.05.001

Colditz IG, Hine BC. Resilience in farm animals: biology, management, breeding and implications for animal welfare. Anim Prod Sci. 2016;56:1961-83. Doi: 10.1071/AN15297. DOI: https://doi.org/10.1071/AN15297

De Barbieri I, Ferreira G, Ramos Z, Navajas EA, Ciappesoni G. Consequences of contrasting feed effi-ciency as lamb on later ewe performance. In: Book of abstracts of the 73rd Annual Meeting of the European Federation of Animal Science. The Netherlands: Wageningen Academic Publishers; 2022. p. 674.

De Barbieri I, Navajas E, Blumetto O, Marques C, Ciappeosni G. 041 Breeding for feed efficiency and methane emissions in sheep. Anim Sci Proc. 2023;14:572. Doi: 10.1016/j.anscip.2023.04.042. DOI: https://doi.org/10.1016/j.anscip.2023.04.042

De Barbieri I, Navajas E, Douhard F, Conington J, Ramos Z, Ciappesoni G. PL-8 A review of sheep resilience. Anim Sci Proc. 2023;14:11-12. Doi: 10.1016/j.anscip.2023.01.009. DOI: https://doi.org/10.1016/j.anscip.2023.01.009

De Barbieri I, Navajas E, Ramos Z, Velazco J, Ciappesoni G. Explorando la eficiencia de conversión del alimento en ovinos en Uruguay. In: Cueto MI, Maurino J, Giovannini N, Bruno Galarraga MM, editors. Actualización en producción ovina 2022. Paraje Villaverde: INTA EEA Bariloche; 2022. p. 19-25.

De Barbieri I, Navajas EA, Giorello D, Velazco JI, Banchero G, Rodríguez B, Rovira F, Ciappesoni G. Association between feed efficiency and methane emissions, performance and health in Merino sheep. In: Book of abstracts of the 71st Annual Meeting of the European Federation of Animal Science. The Netherlands: Wageningen Academic Publishers; 2020. p. 560.

del Campo M, De Barbieri I, Soares de Lima JM, Lorenze P, Rovira F, De Souza D, Rodríguez L, Abella I, van Lier E. Evaluación de nuevas variables que apuntan a la mejora del bienestar animal y al lo-gro de ovinos más resilientes a condiciones extensivas en la raza Merino Australiano. Arch Latinoam Prod Anim. 2021;29:108-10.

Doeschl-Wilson A, Knap PW, Opriessnig T, More SJ. Livestock disease resilience: from individual to herd level. Animal. 2021;15 Suppl 1:100286. Doi: 10.1016/j.animal.2021.100286. DOI: https://doi.org/10.1016/j.animal.2021.100286

Doeschl-Wilson AB, Villanueva B, Kyriazakis I. The first step toward genetic selection for host tolerance to infectious pathogens: obtaining the tolerance phenotype through group estimates. Front Genet. 2012;3:265. Doi: 10.3389/fgene.2012.00265. DOI: https://doi.org/10.3389/fgene.2012.00265

Douhard F, Doeschl-Wilson AB, Corbishley A, Hayward AD, Marcon D, Weisbecker JL, Aguerre S, Bordes L, Jacquiet P, McNeilly TN, Sallé G, Moreno-Romieux C. The cost of host genetic resistance on body condition: evidence from divergently selected sheep. Evol Appl. 2022;15(9):1374-89. Doi: 10.1111/eva.13442. DOI: https://doi.org/10.1111/eva.13442

Douhard F, Douhard M, Gilbert H, Monget P, Gaillard JM, Lemaître JF. How much energetic trade-offs limit selection? Insights from livestock and related laboratory model species. Evol Appl. 2021;14(12):2726-49. Doi: 10.1111/eva.13320. DOI: https://doi.org/10.1111/eva.13320

Douhard F, Rupp R, Gilbert H. Feed efficiency and resource allocation trade-offs: theory, evidence and prospects. In: Veerkamp RF, de Haas Y, editors. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. The Netherlands: Wageningen Academic Publishers; 2022. p. 264-7. DOI: https://doi.org/10.3920/978-90-8686-940-4_54

Ferreira GF, Ciappesoni G, Castells D, Navajas EA, Giorello D, Banchero G, De Barbieri I. Feed conversion efficiency in sheep genetically selected for resistance to gastrointestinal nematodes. Anim Prod Sci. 2021;61:754-60. Doi: 10.1071/AN20121. DOI: https://doi.org/10.1071/AN20121

Friggens NC, Adriaens I, Boré R, Cozzi G, Jurquet J, Kamphuis C, Leiber F, Lora I, Sakowski T, Statham J, De Haas Y. Resilience: reference measures based on longer-term consequences are needed to unlock the potential of precision livestock farming technologies for quantifying this trait. Peer Community J. 2022;2:e38. Doi: 10.24072/pcjournal.136. DOI: https://doi.org/10.24072/pcjournal.136

Friggens NC, Blanc F, Berry DP, Puillet L. Deciphering animal robustness: a synthesis to facilitate its use in livestock breeding and management. Animal. 2017;11(12):2237-51. Doi: 10.1017/S175173111700088X. DOI: https://doi.org/10.1017/S175173111700088X

Friggens NC, Ithurbide M, Lenoir G. Getting to grips with resilience: towards large-scale phenotyping of this complex trait. JDS Communications. Forthcoming 2023. DOI: https://doi.org/10.3168/jdsc.2023-0434

Garcia-Baccino CA, Marie-Etancelin C, Tortereau F, Marcon D, Weisbecker JL, Legarra A. Detection of unrecorded environmental challenges in high-frequency recorded traits, and genetic determinism of resilience to challenge, with an application on feed intake in lambs. Genet Sel Evol. 2021;53(1):4. Doi: 10.1186/s12711-020-00595-x. DOI: https://doi.org/10.1186/s12711-020-00595-x

Guinan FL, Wiggans GR, Norman HD, Dürr JW, Cole JB, Van Tassell CP, Misztal I, Lourenco D. Changes in genetic trends in US dairy cattle since the implementation of genomic selection. J Dairy Sci. 2023;106(2):1110-29. Doi: 10.3168/jds.2022-22205. DOI: https://doi.org/10.3168/jds.2022-22205

Hatcher S, Gardner GE, Gill SD, Lee S, Swan AA, Van Der Werf JHJ. A science-based approach to breeding the future Merino. In: Proceedings of the 9th World Merino Conference. Stellenbosch: South Africa; 2014. p. 1-15.

Hayes B, Kemper K, Silva LPE. Breeding Australian cattle for production in the year 2050. In: Proceedings of the 24th Biennial Conference of the Association for the Advancement of Animal Breeding and Genetics. Armidale: AAABG; 2021. p. 1-5.

Henry BK, Eckard RJ, Beauchemin KA. Adaptation of ruminant livestock production systems to climate changes. Animal. 2018;12(s2):s445-s456. Doi: 10.1017/S1751731118001301. DOI: https://doi.org/10.1017/S1751731118001301

Herd RM, Arthur PF. Physiological basis for residual feed intake. J Anim Sci. 2009;87(14 Suppl):E64-71. Doi: 10.2527/jas.2008-1345. DOI: https://doi.org/10.2527/jas.2008-1345

Hine BC, Acton GA, Elks DJ, Niemeyer DDO, Bell AM, Colditz IG, Ingham AB, Smith JL. Targeting improved resilience in Merino sheep: correlations between immune competence and health and fitness traits. Animal. 2022;16(7):100544. Doi: 10.1016/j.animal.2022.100544. DOI: https://doi.org/10.1016/j.animal.2022.100544

Hine BC, Bell AM, Niemeyer DDO, Duff CJ, Butcher NM, Dominik S, Ingham AB, Colditz IG. Immune competence traits assessed during the stress of weaning are heritable and favorably genetically correlated with temperament traits in Angus cattle. J Anim Sci. 2019;97(10):4053-65. Doi: 10.1093/jas/skz260. DOI: https://doi.org/10.1093/jas/skz260

Hine BC, Mallard BA, Ingham AB, Colditz IG. Immune competence in livestock. In: Hermesch S, Dominik S, editors. Breeding focus 2014: improving resilience. Armidale: Animal Genetics and Breeding Unit; 2014. p. 49-64.

Huber K. Resource allocation mismatch as pathway to disproportionate growth in farm animals - prerequisite for a disturbed health. Animal. 2018;12(3):528-36. Doi: 10.1017/S1751731117002051. DOI: https://doi.org/10.1017/S1751731117002051

Hussein AH, Patra AK, Puchala R, Wilson BK, Goetsch AL. Effects of restricted availability of drinking water on blood characteristics and constituents in Dorper, Katahdin, and St. Croix Sheep from different regions of the USA. Animals (Basel). 2022;12(22):3167. Doi: 10.3390/ani12223167. DOI: https://doi.org/10.3390/ani12223167

Jonker A, Hickey SM, Rowe SJ, Janssen PH, Shackell GH, Elmes S, Bain WE, Wing J, Greer GJ, Bryson B, MacLean S, Dodds KG, Pinares-Patiño CS, Young EA, Knowler K, Pickering NK, McEwan JC. Genetic parameters of methane emissions determined using portable accumulation chambers in lambs and ewes grazing pasture and genetic correlations with emissions determined in respiration chambers. J Anim Sci. 2018;96(8):3031-42. Doi: 10.1093/jas/sky187. DOI: https://doi.org/10.1093/jas/sky187

Joy A, Dunshea FR, Leury BJ, Clarke IJ, DiGiacomo K, Chauhan SS. Resilience of small ruminants to climate change and increased environmental temperature: a review. Animals (Basel). 2020;10(5):867. Doi: 10.3390/ani10050867. DOI: https://doi.org/10.3390/ani10050867

Kaseja K, Mucha S, Smith E, Yates J, Banos G, Conington J. Including genotypic information in genetic evaluations increases the accuracy of sheep breeding values. J Anim Breed Genet. 2023;140(4):462-71. Doi: 10.1111/jbg.12771. DOI: https://doi.org/10.1111/jbg.12771

Knap PW, Doeschl-Wilson A. Why breed disease-resilient livestock, and how? Genet Sel Evol. 2020;52(1):60. Doi: 10.1186/s12711-020-00580-4. DOI: https://doi.org/10.1186/s12711-020-00580-4

Koch R, Swiger L, Chambers D, Gregory K. Efficiency of feed use in beef cattle. J Anim Sci. 1963;22:486-94. Doi: 10.2527/jas1963.222486x. DOI: https://doi.org/10.2527/jas1963.222486x

Lee M, Newman SA, Dodds K, Nilforooshan M, Auvray B, McIntyre S, Campbell D. Genomic evaluations of sheep in New Zealand. N Z J Anim Sci Prod. 2021;81:106-11.

Lima NLL, Ribeiro CRF, de Sá HCM, Leopoldino Júnior I, Cavalcanti LFL, Santana RAV, Furusho-Garcia IF, Pereira IG. Economic analysis, performance, and feed efficiency in feedlot lambs. R Bras Zootec. 2017;46:821-9. Doi: 10.1590/S1806-92902017001000005. DOI: https://doi.org/10.1590/s1806-92902017001000005

Lines DS, Pitchford WS, Bottema CD, Herd R, Oddy VH. Selection for residual feed intake affects appetite and body composition rather than energetic efficiency. Anim Prod Sci. 2014;58:175-84. Doi: 10.1071/AN13321. DOI: https://doi.org/10.1071/AN13321

Macé T, González-García E, Foulquié D, Carrière F, Pradel J, Durand C, Douls S, Allain C, Parisot S, Hazard D. Genome-wide analyses reveal a strong association between LEPR gene variants and body fat reserves in ewes. BMC Genomics. 2022;23(1):412. Doi: 10.1186/s12864-022-08636-z. DOI: https://doi.org/10.1186/s12864-022-08636-z

Macé T, González-García E, Pradel J, Parisot S, Carrière F, Douls S, Foulquié D, Hazard D. Genetic analysis of robustness in meat sheep through body weight and body condition score changes over time. J Anim Sci. 2018;96(11):4501-11. Doi: 10.1093/jas/sky318. DOI: https://doi.org/10.1093/jas/sky318

Macías-Cruz U, Álvarez-Valenzuela FD, Rodríguez-García J, Correa-Calderón A, Torrentera-Olivera NG, Molina-Ramírez L, Avendaño-Reyes L. Crecimiento y características de canal en corderos pelibuey puros y cruzados f1 con razas dorper y katahdin en confinamiento. Arch Med Vet. 2010;42:147-54. Doi: 10.4067/S0301-732X2010000300005. DOI: https://doi.org/10.4067/S0301-732X2010000300005

Mallard BA, Emam M, Paibomesai M, Thompson-Crispi K, Wagter-Lesperance L. Genetic selection of cattle for improved immunity and health. Jpn J Vet Res. 2015;63 Suppl 1:S37-44.

McManus CM, Faria DA, Lucci CM, Louvandini H, Pereira SA, Paiva SR. Heat stress effects on sheep: are hair sheep more heat resistant? Theriogenology. 2020;155:157-67. Doi: 10.1016/j.theriogenology.2020.05.047. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.047

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario Estadístico Agropecuario 2024 [Internet]. Montevideo: MGAP; 2024 [cited 2025 Apr 29]. Available from: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/diea/anuario2024

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario Estadístico Agropecuario 2014 [Internet]. Montevideo: MGAP; 2014 [cited 2025 Apr 29]. Available from: http://www.mgap.gub.uy/Dieaanterior/Anuario2014/diea-Anuario%202014-Digital01.pdf

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Resultados de la encuesta ganadera 2016 [Internet]. Montevideo: MGAP; 2018 [cited 2025 Apr 29]. 60p. Available from: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/datos-y-estadisticas/estadisticas/resultados-encuesta-ganadera-nacional-2016

Mitchell D, Snelling EP, Hetem RS, Maloney SK, Strauss WM, Fuller A. Revisiting concepts of thermal physiology: predicting responses of mammals to climate change. J Anim Ecol. 2018;87(4):956-73. Doi: 10.1111/1365-2656.12818. DOI: https://doi.org/10.1111/1365-2656.12818

Mottet A, de Haan C, Falcucci A, Tempio G, Opio C, Gerber P. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Global Food Sec. 2017;14:1-8. Doi: 10.1016/j.gfs.2017.01.001. DOI: https://doi.org/10.1016/j.gfs.2017.01.001

Mucha S, Bunger L, Conington J. Genome-wide association study of footrot in Texel sheep. Genet Sel Evol. 2015;47(1):35. Doi: 10.1186/s12711-015-0119-3. DOI: https://doi.org/10.1186/s12711-015-0119-3

Mucha S, Tortereau F, Doeschl-Wilson A, Rupp R, Conington J. Meta-analysis of genetic parameters for resilience and efficiency traits in goats and sheep. Animal. 2022;16(3):100456. Doi: 10.1016/j.animal.2022.100456. DOI: https://doi.org/10.1016/j.animal.2022.100456

Navajas EA, Ciappesoni G, Gimeno D, Velazco JI, De Barbieri I. Association of genetic resistance to internal nematodes and production traits on feed efficiency and methane emissions in Corriedale lambs. In: Veerkamp RF, de Haas Y, editors. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. The Netherlands: Wageningen Academic Publishers; 2022. p. 195-8. DOI: https://doi.org/10.3920/978-90-8686-940-4_37

Navajas EA, Ravagnolo O, De Barbieri I, Pravia MI, Aguilar I, Lema MO, Vera B, Peraza P, Marques C, Velazco J, Ciappesoni G. Genetic selection of feed efficiency and methane emissions in sheep and cattle in Uruguay: progress and limitations. In: Veerkamp RF, de Haas Y, editors. Proceedings of 12th World Congress on Genetics Applied to Livestock Production (WCGALP). Technical and species orientated innovations in animal breeding, and contribution of genetics to solving societal challenges. The Netherlands: Wageningen Academic Publishers; 2022. p. 164-7. DOI: https://doi.org/10.3920/978-90-8686-940-4_29

Nicolás-López P, Macías-Cruz U, Correa-Calderón A, Mellado-Bosque MA, Díaz-Molina R, Avendaño-Reyes L. Ajustes asociados a la aclimatación y estrés oxidativo en ovinos bajo estrés calórico: una revisión. Inf Tec Econ Agrar. 2021;117:494-512. DOI: https://doi.org/10.12706/itea.2021.005

Niggeler A, Tetens J, Stäuble A, Steiner A, Drögemüller C. A genome-wide significant association on chromosome 2 for footrot resistance/susceptibility in Swiss White Alpine sheep. Anim Genet. 2017;48(6):712-5. Doi: 10.1111/age.12614. DOI: https://doi.org/10.1111/age.12614

Nkrumah JD, Okine EK, Mathison GW, Schmid K, Li C, Basarab JA, Price MA, Wang Z, Moore SS. Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. J Anim Sci. 2006;84(1):145-53. Doi: 10.2527/2006.841145x. DOI: https://doi.org/10.2527/2006.841145x

Notter DR. Potential for hair sheep in the United States. J Anim Sci. 2000;77:1-8. Doi: 10.2527/jas2000.77E-Suppl1h. DOI: https://doi.org/10.2527/jas2000.77E-Suppl1h

Paganoni B, Rose G, Macleay C, Jones C, Brown DJ, Kearney G, Ferguson M, Thompson AN. More feed efficient sheep produce less methane and carbon dioxide when eating high-quality pellets. J Anim Sci. 2017;95(9):3839-50. Doi: 10.2527/jas2017.1499. DOI: https://doi.org/10.2527/jas.2017.1499

Pérez RV, Macías U, Avendaño L, Correa-Calderón A, López Baca M, Lara Rivera AL. Impacto del estrés por calor en la producción de ovinos de pelo: revisión. Rev Mex Cienc Pecuarias. 2020;11:205-22. Doi: 10.22319/rmcp.v11i1.4923. DOI: https://doi.org/10.22319/rmcp.v11i1.4923

Pickering NK. Genetics of flystrike, dagginess and associated traits in New Zealand dual-purpose sheep [doctoral dissertation]. Palmerston North (NZ): Massey University; 2013. 355p.

Pickering NK, Auvray B, Dodds KG, McEwan JC. Genomic prediction and genome-wide association study for dagginess and host internal parasite resistance in New Zealand sheep. BMC Genomics. 2015;16:958. Doi: 10.1186/s12864-015-2148-2. DOI: https://doi.org/10.1186/s12864-015-2148-2

Poppe M, Veerkamp RF, van Pelt ML, Mulder HA. Exploration of variance, autocorrelation, and skewness of deviations from lactation curves as resilience indicators for breeding. J Dairy Sci. 2020;103(2):1667-84. Doi: 10.3168/jds.2019-17290. DOI: https://doi.org/10.3168/jds.2019-17290

Pravia MI, Navajas EA, Aguilar I, Ravagnolo O. Evaluation of feed efficiency traits in different Hereford populations and their effect on variance component estimation. Anim Prod Sci. 2022;62:1652-60. Doi: 10.1071/AN21420. DOI: https://doi.org/10.1071/AN21420

Pulido-Rodríguez LF, Titto CG, Bruni GdeA, Froge GA, Fuloni MF, Payan-Carrera R, Henrique FL, Geraldo ACAPdeM, Pereira AMF. Effect of solar radiation on thermoregulatory responses of Santa Inês sheep and their crosses with wool and hair Dorper sheep. Small Rumin Res. 2021;202:106470. Doi: 10.1016/j.smallrumres.2021.106470. DOI: https://doi.org/10.1016/j.smallrumres.2021.106470

Raadsma H, Walkom S, Sharland B, Esquivelzeta-Rabell C, Brown D, Bunter K, Ferguson M. Genetic architecture of resistance to virulent ovine-footrot in a case-control study of New Zealand Merino sheep. In: 11 Proceedings of the World Congress on Genetics Applied to Livestock Production. Auckland: WCGALP; 2018. p. 335.

Ramos Z, Blair HT, De Barbieri I, Ciappesoni G, Montossi F, Kenyon PR. Phenotypic responses to selection for ultrafine wool in Uruguayan yearling lambs. Agriculture. 2021;11:179. Doi: 10.3390/agriculture11020179. DOI: https://doi.org/10.3390/agriculture11020179

Ramos Z, Blair HT, De Barbieri I, Ciappesoni G, Montossi F, Kenyon PR. Productivity and reproduc-tive performance of mixed-age ewes across 20 years of selection for ultrafine wool in Uruguay. Agriculture. 2021;11:712. Doi: 10.3390/agriculture11080712. DOI: https://doi.org/10.3390/agriculture11080712

Ramos Z, Garrick DJ, Blair HT, De Barbieri I, Ciappesoni G, Montossi F, Kenyon PR. Genetic and phenotypic relationships between ewe reproductive performance and wool and growth traits in Uruguayan Ultrafine Merino sheep. J Anim Sci. 2023;101:skad071. Doi: 10.1093/jas/skad071. DOI: https://doi.org/10.1093/jas/skad071

Ramos Z, Garrick DJ, Blair HT, Vera B, Ciappesoni G, Kenyon PR. Genomic regions associated with wool, growth and reproduction traits in Uruguayan Merino sheep. Genes (Basel). 2023;14(1):167. Doi: 10.3390/genes14010167. DOI: https://doi.org/10.3390/genes14010167

Rauw WM. Physiological consequences of selection for increased performance. In: 17th Biennial Conference of the Association for the Advancement of Animal Breeding and Genetics 2007. Armidale: AAABG; 2007. p. 240-7.

Rauw WM, Kanis E, Noordhuizen-Stassen EN, Grommers FJ. Undesirable side effects of selection for high production efficiency in farm animals: a review. Lives Prod Sci. 1998;56:15-33. Doi: 10.1016/S0301-6226(98)00147-X. DOI: https://doi.org/10.1016/S0301-6226(98)00147-X

Ravagnolo O, Aguilar I, Ciappesoni G, Navajas E. Investigación y aplicación de la mejora genética animal para una producción ganadera más sostenible. In: García-Inza G, Paruelo J, Zoppolo R, editors. Aportes científicos y tecnológicos del INIA a las trayectorias agroecológicas. Buenos Aires: Fundación CICCUS; 2023. p. 373-94.

Sauvant D, Martin O. Robustesse, rusticité, flexibilité, plasticité (--) les nouveaux critères de qualité des animaux et des systèmes d’élevage: définitions systémique et biologique des différents concepts. INRAE Prod Anim. 2010;23:5-10. Doi: 10.20870/productions-animales.2010.23.1.3280. DOI: https://doi.org/10.20870/productions-animales.2010.23.1.3280

Sheep Genetics. Annual outcomes report 2022-23 [Internet]. Armidale: Meat & Livestock Australia Limited; 2023 [cited 2025 Apr 29]. 11p. Available from: https://www.sheepgenetics.org.au/globalassets/sheep-genetics/about-us/annual-report-2022-23.pdf

Sutera AM, Moscarelli A, Mastrangelo S, Sardina MT, Di Gerlando R, Portolano B, Tolone M. Genome-wide association study identifies new candidate markers for somatic cells score in a local dairy sheep. Front Genet. 2021;12:643531. Doi: 10.3389/fgene.2021.643531. DOI: https://doi.org/10.3389/fgene.2021.643531

Tadesse D, Puchala R, Gipson TA, Goetsch AL. Effects of high heat load conditions on body weight, feed intake, temperature, and respiration of Dorper, Katahdin, and St. Croix sheep. J Appl Anim Res. 2019;47:492-505. Doi: 10.1080/09712119.2019.1674658. DOI: https://doi.org/10.1080/09712119.2019.1674658

Taghipoor M, Pastell M, Martin O, Nguyen Ba H, van Milgen J, Doeschl-Wilson A, Loncke C, Friggens NC, Puillet L, Muñoz-Tamayo R. Animal board invited review: quantification of resilience in farm animals. Animal. 2023;17(9):100925. Doi: 10.1016/j.animal.2023.100925. DOI: https://doi.org/10.1016/j.animal.2023.100925

Thompson-Crispi KA, Hine B, Quinton M, Miglior F, Mallard BA. Association of disease incidence and adaptive immune response in Holstein dairy cows. J Dairy Sci. 2012;95(7):3888-93. Doi: 10.3168/jds.2011-5201. DOI: https://doi.org/10.3168/jds.2011-5201

Thorne JW, Murdoch BM, Freking BA, Redden RR, Murphy TW, Taylor JB, Blackburn HD. Evolution of the sheep industry and genetic research in the United States: opportunities for convergence in the twenty-first century. Anim Genet. 2021;52(4):395-408. Doi: 10.1111/age.13067. DOI: https://doi.org/10.1111/age.13067

Thornton P, Nelson G, Mayberry D, Herrero M. Increases in extreme heat stress in domesticated livestock species during the twenty-first century. Glob Chang Biol. 2021;27(22):5762-72. Doi: 10.1111/gcb.15825. DOI: https://doi.org/10.1111/gcb.15825

Tortereau F, Marie-Etancelin C, Weisbecker JL, Marcon D, Bouvier F, Moreno-Romieux C, François D. Genetic parameters for feed efficiency in Romane rams and responses to single-generation selection. Animal. 2020;14(4):681-7. Doi: 10.1017/S1751731119002544. DOI: https://doi.org/10.1017/S1751731119002544

Tsartsianidou V, Kapsona VV, Sánchez-Molano E, Basdagianni Z, Carabaño MJ, Chatziplis D, Arsenos G, Triantafyllidis A, Banos G. Understanding the seasonality of performance resilience to climate volatility in Mediterranean dairy sheep. Sci Rep. 2021;11(1):1889. Doi: 10.1038/s41598-021-81461-8. DOI: https://doi.org/10.1038/s41598-021-81461-8

Tsartsianidou V, Sánchez-Molano E, Kapsona VV, Basdagianni Z, Chatziplis D, Arsenos G, Triantafyllidis A, Banos G. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet Sel Evol. 2021;53(1):90. Doi: 10.1186/s12711-021-00682-7. DOI: https://doi.org/10.1186/s12711-021-00682-7

Vialoux IM. Genetic parameters of body condition score and effects of BCS and BCS change on ewe performance [doctoral dissertation]. Palmerston North (NZ): Massey University; 2020; 191p.

Walkom SF, Brown DJ. Breeding for resilience and resistance in Merino sheep. In: Hermesch S, Dominik S, editors. Breeding focus 2014: improving resilience. Armidale: Animal Genetics and Breeding Unit; 2014. p. 141-56.

Wang Y, Niu Z, Zeng Z, Jiang Y, Jiang Y, Ding Y, Tang S, Shi H, Ding X. Using high-density SNP array to reveal selection signatures related to prolificacy in Chinese and Kazakhstan sheep breeds. Animals (Basel). 2020;10(9):1633. Doi: 10.3390/ani10091633. DOI: https://doi.org/10.3390/ani10091633

Waters DL, Clark SA, Moghaddar N, van der Werf JH. Genomic analysis of the slope of the reaction norm for body weight in Australian sheep. Genet Sel Evol. 2022;54(1):40. Doi: 10.1186/s12711-022-00734-6. DOI: https://doi.org/10.1186/s12711-022-00734-6

Wildeus S, Turner KE, Collins JR. Growth, intake, diet digestibility, and nitrogen use in three hair sheep breeds fed alfalfa hay. Small Rumin Res. 2007;69:221-7. Doi: 10.1016/j.smallrumres.2005.12.016. DOI: https://doi.org/10.1016/j.smallrumres.2005.12.016

World Bank. Climate Change Knowledge Portal [Internet]. Washington: World Bank Group; [cited 2025 Apr 29]. Available from: https://climateknowledgeportal.worldbank.org/

WWF. Living Planet Report: 2018 aiming higher. Gland: WWF; 2018. 144p.

Zhang M, Dunshea FR, Warner RD, DiGiacomo K, Osei-Amponsah R, Chauhan SS. Impacts of heat stress on meat quality and strategies for amelioration: a review. Int J Biometeorol. 2020;64(9):1613-28. Doi: 10.1007/s00484-020-01929-6. DOI: https://doi.org/10.1007/s00484-020-01929-6

Zhang X, Wang W, Mo F, La Y, Li C, Li F. Association of residual feed intake with growth and slaughtering performance, blood metabolism, and body composition in growing lambs. Sci Rep. 2017;7(1):12681. Doi: 10.1038/s41598-017-13042-7. DOI: https://doi.org/10.1038/s41598-017-13042-7

Zhang Z, Sui Z, Zhang J, Li Q, Zhang Y, Wang C, Li X, Xing F. Identification of signatures of selection for litter size and pubertal initiation in two sheep populations. Animals (Basel). 2022;12(19):2520. Doi: 10.3390/ani12192520. DOI: https://doi.org/10.3390/ani12192520

Downloads

Published

2025-08-01

How to Cite

1.
De Barbieri I, Ramos Z, Pinto-Santini L, Barchet F, Freire T, Odeón M, et al. Identification of sheep robust to climate change and variability. Agrocienc Urug [Internet]. 2025 Aug. 1 [cited 2025 Oct. 18];29(NE2):e1477. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1477

Issue

Section

Review
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)

1 2 > >>