Resposta fisiológica do porta-enxerto Poncirus trifoliata a infecção por um iso-lado RB do Citrus triteza virus

Autores

DOI:

https://doi.org/10.31285/AGRO.29.1636

Palavras-chave:

citrus, CTV, fotossíntese, parâmetros de crescimento, isolados de quebra de resistência

Resumo

Em áreas de cultivo de citros onde o Citrus tristeza virus (CTV) é endêmico, Poncirus trifoliata é comumente usado como porta-enxerto para prevenir o declínio das árvores. No entanto, isolados de CTV que quebram a resistência (RB), capazes de infectar sistemicamente P. trifoliata foram identificados. Entretanto, seus efeitos sobre o porta-enxerto foram pouco estudados. Portanto, o objetivo deste trabalho foi avaliar a resposta fisiológica de P. trifoliata à infecção por um isolado local de RB (RB-UY1) e determinar seus efeitos em mudas enxertadas, usando laranja Navel (N/P. trifoliata) e lima mexicana (ML/P. trifoliata) como modelos. Parâmetros de crescimento, expressão de sintomas, atividade fotossintética e estresse oxidativo foram registrados periodicamente. Os resultados mostraram que a atividade fotossintética não foi afetada pelo isolado RB-UY1 em P. trifoliata nem em mudas enxertadas. Nenhum dano oxidativo foi detectado em nenhum tratamento, apesar de observar níveis mais elevados de peróxido de hidrogênio e radicais superóxido em plantas inoculadas com RB-UY1. No entanto, a redução do crescimento foi registrada em P. trifoliata e ML/P. trifoliata, mas não em N/P. trifoliata. Em resposta à infecção por RB-UY1, houve um aumento significativo no conteúdo fenólico total no porta-enxerto e N/P. trifoliata, embora não tenha havido diferenças na atividade enzimática da catalase e da ascorbato peroxidase entre os tratamentos. Em conclusão, a infecção pelo isolado RB-UY1 afetou o crescimento do porta-enxerto ao longo do tempo, mas não comprometeu o desempenho fisiológico do rebento N/P. trifoliata. Essas descobertas demonstram uma clara interação entre hospedeiro -isolado viral e ressaltam a necessidade de estudos adicionais para elucidar os mecanismos subjacentes à resposta do hospedeiro aos isolados RB-CTV.

Downloads

Não há dados estatísticos.

Referências

Albiach-Marti M, Grosser J, Gowda S, Mawassi M, Satyanarayana T, Garnsey S, Dawson W. Citrus tristeza virus replicates and forms infectious virions in protoplasts of resistant citrus relatives. Mol Breed. 2004;14:117-28. Doi: 10.1023/B:MOLB.0000038000.51218.a7. DOI: https://doi.org/10.1023/B:MOLB.0000038000.51218.a7

Arbona V, Flors V, Jacas J, García-Agustín P, Gómez-Cadenas A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol. 2003;44(4):388-94. Doi: 10.1093/pcp/pcg059. DOI: https://doi.org/10.1093/pcp/pcg059

Bertolini E, Moreno A, Capote N, Olmos A, de Luis A, Vidal E, Pérez-Panadés J, Cambra M. Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur J Plant Pathol. 2008;120:177-88. Doi: 10.1007/s10658-007-9206-9. DOI: https://doi.org/10.1007/s10658-007-9206-9

Björkman O, Demmig B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta. 1987;170(4):489-504. Doi: 10.1007/BF00402983. DOI: https://doi.org/10.1007/BF00402983

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54. Doi: 10.1016/0003-2697(76)90527-3. DOI: https://doi.org/10.1006/abio.1976.9999

Cook G, van Vuuren SP, Breytenbach JHJ, Steyn C, Burger JT, Maree HJ. Characterization of Citrus tristeza virus single-variant sources in grapefruit in greenhouse and field trials. Plant Dis. 2016;100(11):2251-6. Doi: 10.1094/PDIS-03-16-0391-RE. DOI: https://doi.org/10.1094/PDIS-03-16-0391-RE

Dawson WO, Bar-Joseph M, Garnsey SM, Moreno P. Citrus tristeza virus: making an ally from an enemy. Annu Rev Phytopathol. 2015;53:137-55. Doi: 10.1146/annurev-phyto-080614-120012. DOI: https://doi.org/10.1146/annurev-phyto-080614-120012

Dawson WO, Garnsey SM, Tatineni S, Folimonova SY, Harper SJ, Gowda S. Citrus tristeza virus-host interactions. Front Microbiol. 2013;4:88. Doi: 10.3389/fmicb.2013.00088. DOI: https://doi.org/10.3389/fmicb.2013.00088

Dhindsa S, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J Exp Bot. 1981;32:79-91. Doi: 10.1093/jxb/32.1.79. DOI: https://doi.org/10.1093/jxb/32.1.79

Dória MS, Sousa AO, Barbosa Cde J, Costa MG, Gesteira Ada S, Souza RM, Freitas AC, Pirovani CP. Citrus tristeza virus (CTV) causing proteomic and enzymatic changes in sweet orange variety "Westin". PLoS One. 2015;10(7):e0130950. Doi: 10.1371/journal.pone.0130950. DOI: https://doi.org/10.1371/journal.pone.0130950

Folimonova SY, Achor D, Bar-Joseph M. Walking together: cross-protection, genome conservation, and the replication machinery of Citrus tristeza virus. Viruses. 2020;12(12):1353. Doi: 10.3390/v12121353. DOI: https://doi.org/10.3390/v12121353

Folimonova SY, Sun YD. Citrus Tristeza virus: from pathogen to panacea. Annu Rev Virol. 2022;9(1):417-35. Doi: 10.1146/annurev-virology-100520-114412. DOI: https://doi.org/10.1146/annurev-virology-100520-114412

Garnsey S, Gumpf D, Roistacher C, Civerolo E, Lee R, Yokomi R, Bar-Joseph M. Toward standarized evaluation of the biological properties of Citrus tristeza virus. Phytophylactica [Internet]. 1987 [cited 2025 May 2];19:151-7. Available from: https://hdl.handle.net/10520/AJA03701263_997.

Hančević K, Tomislav R, Paskovic I, Urlić B. Biochemical and physiological responses to long‐term Citrus tristeza virus infection in Mexican lime plants. Plant Pathol. 2018;67(4):987-94. Doi: 10.1111/ppa.12799. DOI: https://doi.org/10.1111/ppa.12799

Harper SJ, Cowell SJ, Robertson CJ, Dawson WO. Differential tropism in roots and shoots infected by Citrus tristeza virus. Virology. 2014;460-461:91-9. Doi: 10.1016/j.virol.2014.04.035. DOI: https://doi.org/10.1016/j.virol.2014.04.035

Harper SJ, Dawson TE, Pearson MN. Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Arch Virol. 2010;155(4):471-80. Doi: 10.1007/s00705-010-0604-5. DOI: https://doi.org/10.1007/s00705-010-0604-5

Hernández-Rodríguez L, Bertalmío A, Arruabarrena A, Rubio L, Rivas F, Benítez-Galeano MJ, Colina R, Maeso D. First report of the Citrus tristeza virus trifoliate resistance-breaking (RB) genotype in 'Newhall' sweet Orange in South America. Plant Dis. 2017;101(6):1063. Doi: 10.1094/PDIS-04-16-0430-PDN. DOI: https://doi.org/10.1094/PDIS-04-16-0430-PDN

Hull R. Virus-plant interactions in non-permissive and permissive host. In: Plant Virology. 5th ed. London: Academic Press; 2014. p. 605-68. DOI: https://doi.org/10.1016/B978-0-12-384871-0.00011-X

Jiang T, Zhou T. Unraveling the mechanisms of virus-induced symptom development in plants. Plants (Basel). 2023;12(15):2830. Doi: 10.3390/plants12152830. DOI: https://doi.org/10.3390/plants12152830

Karasev AV, Boyko VP, Gowda S, Nikolaeva OV, Hilf ME, Koonin EV, Niblett CL, Cline K, Gumpf DJ, Lee RF, Garnsey SM, Lewandowski DJ, Dawson WO. Complete sequence of the citrus tristeza virus RNA genome. Virology. 1995;208(2):511-20. Doi: 10.1006/viro.1995.1182. DOI: https://doi.org/10.1006/viro.1995.1182

Kaur S, Samota MK, Choudhary M, Choudhary M, Pandey AK, Sharma A, Thakur J. How do plants defend themselves against pathogens-Biochemical mechanisms and genetic interventions. Physiol Mol Biol Plants. 2022;28(2):485-504. Doi: 10.1007/s12298-022-01146-y. DOI: https://doi.org/10.1007/s12298-022-01146-y

Kramer DM, Johnson G, Kiirats O, Edwards GE. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res. 2004;79(2):209. Doi: 10.1023/B:PRES.0000015391.99477.0d. DOI: https://doi.org/10.1023/B:PRES.0000015391.99477.0d

Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol. 2008;9(2):251-68. Doi: 10.1111/j.1364-3703.2007.00455.x. DOI: https://doi.org/10.1111/j.1364-3703.2007.00455.x

Muir CD. A Stomatal model of anatomical tradeoffs between gas exchange and pathogen colonization. Front Plant Sci. 2020;11:518991. Doi: 10.3389/fpls.2020.518991. DOI: https://doi.org/10.3389/fpls.2020.518991

Munir N, Hameed AA, Haq R, Naz S. Biochemical changes in cultivars of sweet oranges infected with citrus tristeza virus. Braz J Biol. 2019;79(4):742-8. Doi: 10.1590/1519-6984.193791. DOI: https://doi.org/10.1590/1519-6984.193791

Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867-80. Doi: 10.1093/oxfordjournals.pcp.a076232. DOI: https://doi.org/10.1093/oxfordjournals.pcp.a076232

Padmanabhan MS, Goregaoker SP, Golem S, Shiferaw H, Culver JN. Interaction of the tobacco mosaic virus replicase protein with the Aux/IAA protein PAP1/IAA26 is associated with disease development. J Virol. 2005;79(4):2549-58. Doi: 10.1128/JVI.79.4.2549-2558.2005. DOI: https://doi.org/10.1128/JVI.79.4.2549-2558.2005

Pérez-Clemente R, Montoliu A, Vives V, López-Climent M, Gómez-Cadenas A. Photosynthetic and antiox-idant responses of Mexican lime (Citrus aurantifolia) plants to Citrus tristeza virus infection. Plant Pathol. 2015;64:16-24. Doi: 10.1111/ppa.12241. DOI: https://doi.org/10.1111/ppa.12241

Pérez-Clemente RM, Montoliu A, Vives-Peris V, Arbona V, Gómez-Cadenas A. Hormonal and metabolic responses of Mexican lime plants to CTV infection. J Plant Physiol. 2019;238:40-52. Doi: 10.1016/j.jplph.2019.05.001. DOI: https://doi.org/10.1016/j.jplph.2019.05.001

Ramel F, Sulmon C, Bogard M, Couée I, Gouesbet G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 2009;9:28. Doi: 10.1186/1471-2229-9-28. DOI: https://doi.org/10.1186/1471-2229-9-28

Rao MV, Paliyath G, Ormrod DP. Ultraviolet-B- and ozone-induced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. Plant Physiol. 1996;110(1):125-36. Doi: 10.1104/pp.110.1.125. DOI: https://doi.org/10.1104/pp.110.1.125

Rivas F, Fornes F, Rodrigo M, Zacarías L, Agustí M. Changes in carotenoids and ABA content in Citrus leaves in response to girdling. Sci Hortic. 2011;127:482-7. Doi: 10.1016/j.scienta.2010.11.010. DOI: https://doi.org/10.1016/j.scienta.2010.11.010

Rivas F, Fornes F, Rodrigo M, Zacarías L, Agustí M. Girdling induces oxidative damage and triggers enzymatic and non-enzymatic antioxidative defences in Citrus leaves. Environ Exp Bot. 2008;64(3):256-63. Doi: 10.1016/j.envexpbot.2008.07.006. DOI: https://doi.org/10.1016/j.envexpbot.2008.07.006

Roistacher C. Graft-transmissible diseases of citrus, handbook for detection and diagnosis. Rome: FAO; 1991. 286p.

Roy A, Choudhary N, Hartung JS, Brlansky RH. The prevalence of the Citrus tristeza virus Trifoliate Resistance breaking genotype among Puerto Rican isolates. Plant Dis. 2013;97(9):1227-34. Doi: 10.1094/PDIS-01-12-0012-RE. DOI: https://doi.org/10.1094/PDIS-01-12-0012-RE

Rubio L, Arruabarrena A, Salvo M, Castells M, Bertalmío A, Hernández-Rodríguez L, Benítez-Galeano MJ, Maeso D, Colina R, Rivas F. Biological and molecular characterization of a resistance-breaking isolate of citrus tristeza virus from Uruguay and its effects on Poncirus trifoliata growth performance. Arch Virol. 2023;168(4):123. Doi: 10.1007/s00705-023-05749-y. DOI: https://doi.org/10.1007/s00705-023-05749-y

Sampol B, Bota J, Riera D, Medrano H, Flexas J. Analysis of the virus-induced inhibition of photosynthesis in malmsey grapevines. New Phytol. 2003;160(2):403-12. Doi: 10.1046/j.1469-8137.2003.00882.x. DOI: https://doi.org/10.1046/j.1469-8137.2003.00882.x

Sánchez-Rangel JC, Benavides J, Heredia JB, Cisneros-Zevallos L, Jacobo-Velázquez DA. The Folin–Ciocalteu assay revisited improvement of its specificity for total phenolic content determination. Anal Methods. 2013;5:5990-9. Doi: 10.1039/C3AY41125G. DOI: https://doi.org/10.1039/c3ay41125g

Scott KA, Hlela Q, Zablocki O, Read D, van Vuuren S, Pietersen G. Genotype composition of populations of grapefruit-cross-protecting citrus tristeza virus strain GFMS12 in different host plants and aphid-transmitted sub-isolates. Arch Virol. 2013;158(1):27-37. Doi: 10.1007/s00705-012-1450-4. DOI: https://doi.org/10.1007/s00705-012-1450-4

Siddique Z, Akhtar KP, Hameed A, Sarwar N, Imran-Ul-Haq, Khan SA. Biochemical alterations in leaves of resistant and susceptible cotton genotypes infected systemically by cotton leaf curl Burewala virus. J Plant Interact. 2014;9:702-11. Doi: 10.1080/17429145.2014.905800. DOI: https://doi.org/10.1080/17429145.2014.905800

Tatineni S, Dawson WO. Enhancement or attenuation of disease by deletion of genes from Citrus tristeza virus. J Virol. 2012;86(15):7850-7. Doi: 10.1128/JVI.00916-12. DOI: https://doi.org/10.1128/JVI.00916-12

Tatineni S, Robertson CJ, Garnsey SM, Bar-Joseph M, Gowda S, Dawson WO. Three genes of Citrus tristeza virus are dispensable for infection and movement throughout some varieties of citrus trees. Virology. 2008;376(2):297-307. Doi: 10.1016/j.virol.2007.12.038. DOI: https://doi.org/10.1016/j.virol.2007.12.038

van Kooten O, Snel JF. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res. 1990;25(3):147-50. Doi: 10.1007/BF00033156. DOI: https://doi.org/10.1007/BF00033156

van Loon LC, Rep M, Pieterse CM. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006;44:135-62. Doi: 10.1146/annurev.phyto.44.070505. DOI: https://doi.org/10.1146/annurev.phyto.44.070505.143425

Wang J, Zhou T, Cao M, Zhou Y, Li Z. First report of Citrus tristeza virus trifoliate resistance-breaking (RB) genotype in Citrus grandis in China. J Plant Pathol. 2019;101(2):451. Doi: 10.1007/s42161-018-0169-9. DOI: https://doi.org/10.1007/s42161-018-0169-9

Yokomi RK, Selvaraj V, Maheshwari Y, Saponari M, Giampetruzzi A, Chiumenti M, Hajeri S. Identification and characterization of Citrus tristeza virus isolates breaking resistance in Trifoliate Orange in California. Phytopathology. 2017;107(7):901-8. Doi: 10.1094/PHYTO-01-17-0007-R. DOI: https://doi.org/10.1094/PHYTO-01-17-0007-R

Zhao S, Li Y. Current understanding of the interplays between host hormones and plant viral infections. PLoS Pathog. 2021;17(2):e1009242. Doi: 10.1371/journal.ppat.1009242. DOI: https://doi.org/10.1371/journal.ppat.1009242

Downloads

Publicado

2025-05-12

Como Citar

1.
Rubio L, Machado D, Otero A, Blanco O, Guimaraens A, Sebres M, et al. Resposta fisiológica do porta-enxerto Poncirus trifoliata a infecção por um iso-lado RB do Citrus triteza virus. Agrocienc Urug [Internet]. 12º de maio de 2025 [citado 17º de outubro de 2025];29:e1636. Disponível em: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1636

Edição

Seção

Plant protection
QR Code

Métricas

Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações

Artigos mais lidos pelo mesmo(s) autor(es)