A graduated methodology for mitigating GHG emissions and nutrient losses in Integrated Crop-Livestock Production Systems

Authors

DOI:

https://doi.org/10.31285/AGRO.29.1330

Keywords:

agroecosystems, integrated crop-livestock production systems, GHG emissions, nutrient losses, transition

Abstract

The agricultural sector must mitigate losses in greenhouse gas (GHG) emissions, nutrients, and inputs within the context of climate change and ecosystem degradation. Integrated crop-livestock production systems can enhance carbon and nutrient circularity. A holistic methodology is proposed to guide producers in developing strategies that reduce environmental impacts while improving system resilience through circular and ecosystem-based practices.

Developed as part of the Integrity project (EraNet), this methodology presents a graduated approach organized into four stages. These stages correspond to different levels of the production system, starting from production processes (animal and plant) and culminating at the agroecosystem level.

The first stage focuses on maximizing efficiency in both animal and crop management by identifying key leverage points to enhance production and quality. The second stage develops strategies to reduce nutrient losses and emissions, including effluent management and enteric emissions. The third stage promotes the integration of animals and crops within the production system, optimizing spatial arrangements, internal nutrient circularity, and minimizing external inputs. The fourth stage involves developing carbon sequestration strategies to achieve carbon neutrality and promote ecosystem services.

By guiding producers through these stages, the methodology helps identify high-impact actions that can be implemented immediately or that require longer-term structural changes, serving as a valuable tool for initiating transitions toward more resilient agricultural systems.

Downloads

Download data is not yet available.

References

Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K. Framing and Context. In: IPCC, editor. Global Warming of 1.5°C. Cambridge: Cambridge University Press; 2019. p. 49-92.

Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, Oh J, Dijkstra J, Bannink A, Bayat AR, Crompton LA, Eugène MA, Enahoro D, Kebreab E, Kreuzer M, McGee M, Martin C, Newbold CJ, Reynolds CK, Schwarm A, Shingfield KJ, Veneman JB, Yáñez-Ruiz DR, Yu Z. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc Natl Acad Sci U S A. 2022;119(20):e2111294119. Doi: 10.1073/pnas.2111294119. DOI: https://doi.org/10.1073/pnas.2111294119

Bačėninaitė D, Džermeikaitė K, Antanaitis R. Global warming and dairy cattle: how to control and reduce methane emission. Animals (Basel). 2022;12(19):2687. Doi: 10.3390/ani12192687. DOI: https://doi.org/10.3390/ani12192687

Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Current enteric methane mitigation options. J Dairy Sci. 2022;105(12):9297-326. Doi: 10.3168/jds.2022-22091. DOI: https://doi.org/10.3168/jds.2022-22091

Darré E, Llanos E, Astigarraga L, Cadenazzi M, Picasso V. Do pasture-based mixed dairy systems with higher milk production have lower environmental impacts?: a Uruguayan case study. N Zeal J Agr Res. 2021;64:444-62. Doi: 10.1080/00288233.2020.1750433. DOI: https://doi.org/10.1080/00288233.2020.1750433

Díaz de Otálora X, Amon B, Balaine L, Dragoni F, Estellés F, Ragaglini G, Kieronczyk M, Jørgensen GHM, del Prado A. Influence of farm diversity on nitrogen and greenhouse gas emission sources from key European dairy cattle systems: a step towards emission mitigation and nutrient circularity. Agric Syst. 2024;216:103902. Doi: 10.1016/j.agsy.2024.103902. DOI: https://doi.org/10.1016/j.agsy.2024.103902

El Bilali H. Research on agro-food sustainability transitions: a systematic review of research themes and an analysis of research gaps. J Clean Prod. 2019;221:353-64. Doi: 10.1016/j.jclepro.2019.02.232. DOI: https://doi.org/10.1016/j.jclepro.2019.02.232

FAO. Greenhouse gas emissions from agrifood systems: global, regional and country trends, 2000-2020. Rome: FAO; 2024. 11p.

Garcia L, Celette F, Gary C, Ripoche A, Valdés-Gómez H, Metay A. Management of service crops for the provision of ecosystem services in vineyards: a review. Agric Ecosyst Environ. 2018;251:158-70. Doi: 10.1016/j.agee.2017.09.030. DOI: https://doi.org/10.1016/j.agee.2017.09.030

Glibert PM. From hogs to HABs: impacts of industrial farming in the US on nitrogen and phosphorus and greenhouse gas pollution. Biogeochemistry. 2020;150(2):139-80. Doi: 10.1007/s10533-020-00691-6. DOI: https://doi.org/10.1007/s10533-020-00691-6

Grigorieva E, Livenets A, Stelmakh E. Adaptation of agriculture to climate change: a scoping review. Climate. 2023;11(10):202. Doi: 10.3390/cli11100202. DOI: https://doi.org/10.3390/cli11100202

Hercher-Pasteur J, Loiseau E, Sinfort C, Hélias A. Identifying the resource use and circularity in farm systems: Focus on the energy analysis of agroecosystems. Resour Conserv Recycl. 2021;169:105502. Doi: 10.1016/j.resconrec.2021.105502. DOI: https://doi.org/10.1016/j.resconrec.2021.105502

Hong C, Burney JA, Pongratz J, Nabel JEMS, Mueller ND, Jackson RB, Davis SJ. Global and regional drivers of land-use emissions in 1961-2017. Nature. 2021;589(7843):554-61. Doi: 10.1038/s41586-020-03138-y. DOI: https://doi.org/10.1038/s41586-020-03138-y

Koppelmäki K, Helenius J, Schulte RPO. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour Conserv Recycl. 2021;164:105218. Doi: 10.1016/j.resconrec.2020.105218. DOI: https://doi.org/10.1016/j.resconrec.2020.105218

Martin G, Moraine M, Ryschawy J, Magne MA, Asai M, Sarthou JP, Duru M, Therond O. Crop–livestock integration beyond the farm level: a review. Agron Sustain Dev. 2016;36:53. Doi: 10.1007/s13593-016-0390-x. DOI: https://doi.org/10.1007/s13593-016-0390-x

McDowell RW, Rotz CA, Oenema J, Macintosh KA. Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems. Nat Food. 2022;3(12):1065-74. Doi: 10.1038/s43016-022-00644-2. DOI: https://doi.org/10.1038/s43016-022-00644-2

Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O'Rourke S, Winowiecki L. Soil carbon 4 per mille. Geoderma. 2017;292:59-86. Doi: 10.1016/j.geoderma.2017.01.002. DOI: https://doi.org/10.1016/j.geoderma.2017.01.002

Ministerio de Ambiente (UY). Informe del inventario nacional de gases de efecto invernadero Uruguay: serie 1990–2022. Montevideo: MA; 2024. 517p.

Miranda ND, Tuomisto HL, McCulloch MD. Meta-analysis of greenhouse gas emissions from anaerobic digestion processes in dairy farms. Environ Sci Technol. 2015;49(8):5211-9. Doi: 10.1021/acs.est.5b00018. DOI: https://doi.org/10.1021/acs.est.5b00018

Nilsson P, Bommarco R, Hansson H, Kuns B, Schaak H. Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms. Ecol Econ. 2022;198:107465. Doi: 10.1016/j.ecolecon.2022.107465. DOI: https://doi.org/10.1016/j.ecolecon.2022.107465

Odum HT. Environment, power and society. New York: Wiley; 1971. 331p.

Rockström J, Edenhofer O, Gaertner J, DeClerck F. Planet-proofing the global food system. Nat Food. 2020;1(1):3-5. Doi: 10.1038/s43016-019-0010-4. DOI: https://doi.org/10.1038/s43016-019-0010-4

Rótolo GC, Francis C, Craviotto RM, Ulgiati S. Environmental assessment of maize production alternatives: traditional, intensive and GMO-based cropping patterns. Ecol Indic. 2015;57:48-60. Doi: 10.1016/j.ecolind.2015.03.036. DOI: https://doi.org/10.1016/j.ecolind.2015.03.036

Sánchez AC, Kamau HN, Grazioli F, Jones SK. Financial profitability of diversified farming systems: a global meta-analysis. Ecol Econ. 2022;201:107595. Doi: 10.1016/j.ecolecon.2022.107595. DOI: https://doi.org/10.1016/j.ecolecon.2022.107595

Schiller KJF, Klerkx L, Poortvliet PM, Godek W. Exploring barriers to the agroecological transition in Nicaragua: a technological innovation systems approach. Agroecol Sustain Food Syst. 2020;44(1):88-132. Doi: 10.1080/21683565.2019.1602097. DOI: https://doi.org/10.1080/21683565.2019.1602097

Siddique IA, Grados D, Chen J, Lærke PE, Jørgensen U. Soil organic carbon stock change following perennialization: a meta-analysis. Agron Sustain Dev. 2023;43(5):58. Doi: 10.1007/s13593-023-00912-w. DOI: https://doi.org/10.1007/s13593-023-00912-w

Tibi A, Martinet V, Vialatte A. Protéger les cultures par la diversité végétale. Versailles: Éditions Quae; 2023. 132p. DOI: https://doi.org/10.35690/978-2-7592-3733-3

van Gastelen S, Burgers EEA, Dijkstra J, de Mol R, Muizelaar W, Walker N, Bannink A. Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein-Friesian dairy cows. J Dairy Sci. 2024;107(8):5556-73. Doi: 10.3168/jds.2023-24198. DOI: https://doi.org/10.3168/jds.2023-24198

van Zanten HHE, Simon W, van Selm B, Wacker J, Maindl TI, Frehner A, Hijbeek R, van Ittersum MK, Herrero M. Circularity in Europe strengthens the sustainability of the global food system. Nat Food. 2023;4(4):320-30. Doi: 10.1038/s43016-023-00734-9. DOI: https://doi.org/10.1038/s43016-023-00734-9

Van Zanten HHE, Van Ittersum MK, De Boer IJM. The role of farm animals in a circular food system. Glob Food Sec. 2019;21:18-22. Doi: 10.1016/j.gfs.2019.06.003. DOI: https://doi.org/10.1016/j.gfs.2019.06.003

Vermunt DA, Wojtynia N, Hekkert MP, Van Dijk J, Verburg R, Verweij PA, Wassen M, Runhaar H. Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: a systemic analysis of Dutch dairy farming. Agric Syst. 2022;195:103280. Doi: 10.1016/j.agsy.2021.103280. DOI: https://doi.org/10.1016/j.agsy.2021.103280

Vidal Legaz B, Maia De Souza D, Teixeira RFM, Antón A, Putman B, Sala S. Soil quality, properties, and functions in life cycle assessment: an evaluation of models. J Clean Prod. 2017;140:502-15. Doi: 10.1016/j.jclepro.2016.05.077. DOI: https://doi.org/10.1016/j.jclepro.2016.05.077

Yang X, Xiong J, Du T, Ju X, Gan Y, Li S, Xia L, Shen Y, Pacenka S, Steenhuis TS, Siddique KHM, Kang S, Butterbach-Bahl K. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat Commun. 2024;15(1):198. Doi: 10.1038/s41467-023-44464-9. DOI: https://doi.org/10.1038/s41467-023-44464-9

Yuan J, Liao C, Zhang T, Guo C, Liu J. Advances in ecology research on integrated rice field aquaculture in China. Water. 2022;14:2333. Doi: 10.3390/w14152333. DOI: https://doi.org/10.3390/w14152333

Zhang J, Van Der Heijden MGA, Zhang F, Bender SF. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Front Agric Sci Eng. 2020;7(3):236-42. Doi: 10.15302/J-FASE-2020336. DOI: https://doi.org/10.15302/J-FASE-2020336

Downloads

Published

2025-08-01

How to Cite

1.
Hercher-Pasteur J, Romera Álvaro, Fariña S, Dini Y, La Manna A, Ciganda V. A graduated methodology for mitigating GHG emissions and nutrient losses in Integrated Crop-Livestock Production Systems. Agrocienc Urug [Internet]. 2025 Aug. 1 [cited 2025 Oct. 17];29(NE2):e1330. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1330

Issue

Section

Article
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)