Balancing nitrogen at the farm gate

Economic-environmental sustainability trade-off in pastoral dairy systems of Uruguay

Authors

DOI:

https://doi.org/10.31285/AGRO.28.1243

Keywords:

grazing systems, whole-farm balance, N losses, N surplus, N use efficiency

Abstract

Uruguay's dairy can potentially enhance milk productivity competitively, but intensification risks elevating nitrogen (N) surplus, heightening environmental concerns. This study quantified farm-gate N inputs and outputs, calculating N surplus (input-output) and N use efficiency (NUE=output/input) for 17 commercial modal dairy systems identified in the 2014 and 2019 national surveys and 6 prospective intensified systems based on experimental pastoral farmlets achieving near-maximal rainfed productivity. Current dairy systems maintained N surplus at 71 kg N ha-1 between 2014 and 2019 (range: 44-97 kg N ha-1) while improving NUE from 28.3 to 30.5% (range: 20-35%). Intensification increased N surplus without necessarily reducing NUE. Our analyses highlight three aspects: (i) comparatively low N surplus of current Uruguayan dairy, (ii) nonlinear links between N surplus and stocking rate, feed intake, milk productivity and operating profit, and (iii) inequality between dairy systems in their contribution to national dairy N surplus reflects mainly disparity in farm size. These insights underscore the crucial need for understanding the actual fate of N surpluses: nitrate leaching, ammonia volatilisation, N2 denitrification, or N accumulation in soil organic matter. This is an unavoidable requisite for designing management practices and policies able to effectively optimise the economic and environmental sustainability of Uruguayan dairy.

Downloads

Download data is not yet available.

References

Agricultural Research Council. The nutrient requirements of ruminant livestock. Oxon: CAB International; 1994. 351p.

Beukes PC, Scarsbrook MR, Gregorini P, Romera AJ, Clark DA, Catto W. The relationship between milk production and farm-gate nitrogen surplus for the Waikato region, New Zealand. J Environ Manage. 2012;93(1):44-51. Doi: 10.1016/j.jenvman.2011.08.013. DOI: https://doi.org/10.1016/j.jenvman.2011.08.013

Brentrup F, Pallière C. Nitrogen use efficiency as an agro-environmental indicator. In: Proceedings of the OECD workshop on OECD agri-environmental indicators: lessons learned and future directions, 23-26 March, 2010. Leysin: OECD; 2010. p. 23-6.

Buckley C, Wall DP, Moran B, O’Neill S, Murphy PNC. Farm gate level nitrogen balance and use efficiency changes post implementation of the EU nitrates Directive. Nutr Cycl Agroecosystems. 2016;104(1):1-13. Doi: 10.1007/s10705-015-9753-y. DOI: https://doi.org/10.1007/s10705-015-9753-y

Burchill W, Lanigan GJ, Li D, Williams M, Humphreys J. A system N balance for a pasture-based system of dairy production under moist maritime climatic conditions. Agric Ecosyst Environ. 2016;220:202-10. Doi: 10.1016/j.agee.2015.12.022. DOI: https://doi.org/10.1016/j.agee.2015.12.022

Cameron KC, Di HJ, Moir JL. Nitrogen losses from the soil/plant system: a review. Ann Appl Biol. 2013;162(2):145-73. Doi: 10.1111/aab.12014. DOI: https://doi.org/10.1111/aab.12014

Carnelos DA, Portela SI, Jobbágy EG, Jackson RB, Di Bella CM, Panario D, Fagúndez C, Piñeiro-Guerra JM, Grion L, Piñeiro G. A first record of bulk atmospheric deposition patterns of major ions in southern South America. Biogeochemistry. 2019;144(3):261-71. Doi: 10.1007/s10533-019-00584-3. DOI: https://doi.org/10.1007/s10533-019-00584-3

Chilibroste P. A major challenge for the Uruguayan dairy industry: sustainable growth. Agrocienc Urug. 2021;25(2):e970. Doi: 10.31285/AGRO.25.970. DOI: https://doi.org/10.31285/AGRO.25.970

Clark DA, Caradus JR, Monaghan RM, Sharp P, Thorrold BS. Issues and options for future dairy farming in New Zealand. J Agric Res. 2007;50(2):203-21. Doi: 10.1080/00288230709510291. DOI: https://doi.org/10.1080/00288230709510291

Clay N, Garnett T, Lorimer J. Dairy intensification: Drivers, impacts and alternatives. Ambio. 2020;49(1):35-48. Doi: 10.1007/s13280-019-01177-y. DOI: https://doi.org/10.1007/s13280-019-01177-y

Darré E, Llanos E, Astigarraga L, Cadenazzi M, Picasso V. Do pasture-based mixed dairy systems with higher milk production have lower environmental impacts? A Uruguayan case study. J Agric Res. 2021;64(3):444-62. Doi: 10.1080/00288233.2020.1750433. DOI: https://doi.org/10.1080/00288233.2020.1750433

de Klein CAM, Monaghan RM, Ledgard SF, Shepherd M. A system’s perspective on the effectiveness of measures to mitigate the environmental impacts of nitrogen losses from pastoral dairy farming. In: Proceedings of the 4th Australasian Dairy Science Symposium. Canterbury: Lincoln University; 2010. p. 14-28.

Dillon P, Shalloo L, Murphy D, O’Brien D, Richards K, O’Donovan M, Ruelle E. The impact of nitrogen management strategies within grass based dairy systems [Internet]. Oak Park: Teagasc; 2021 [cited 2024 Feb 29]. 49p. Available from: https://www.teagasc.ie/publications/2021/the-impact-of-nitrogen-management-strategies-within-grass-based-dairy-systems.php.

EU Nitrogen Expert Panel. Nitrogen use efficiency (NUE) an indicator for the utilization of nitrogen in agriculture and foodsystems. Wageningen: Wageningen University; 2015. 47p.

Fariña SR, Chilibroste P. Opportunities and challenges for the growth of milk production from pasture: the case of farm systems in Uruguay. Agric Syst. 2019;176:102631. Doi: 10.1016/j.agsy.2019.05.001. DOI: https://doi.org/10.1016/j.agsy.2019.05.001

Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, Godfray HC. Agriculture: Sustainable intensification in agriculture: premises and policies. Science. 2013;341(6141):33-4. Doi: 10.1126/science.1234485. DOI: https://doi.org/10.1126/science.1234485

Gini C. Measurement of inequality of incomes. Econ J. 1921;31(121):124-6. Doi: 10.2307/2223319. DOI: https://doi.org/10.2307/2223319

Gourley CJP, Dougherty WJ, Weaver DM, Aarons SR, Awty IM, Gibson DM, Hannah MC, Smith AP, Peverill KI. Farm-scale nitrogen, phosphorus, potassium and sulfur balances and use efficiencies on Australian dairy farms. Anim Prod Sci. 2012;52(10):929-44. Doi: 10.1071/AN11337. DOI: https://doi.org/10.1071/AN11337

Haas G, Deittert C, Köpke U. Farm-gate nutrient balance assessment of organic dairy farms at different intensity levels in Germany. Renew Agric Food Syst. 2007;22(3):223-32. Doi: 10.1017/S1742170507001780. DOI: https://doi.org/10.1017/S1742170507001780

Hoekstra NJ, Schulte RPO, Forrestal PJ, Hennessy D, Krol DJ, Lanigan GJ, Müller C, Shalloo L, Wall DP, Richards KG. Scenarios to limit environmental nitrogen losses from dairy expansion. Sci Total Environ. 2020;707:134606. Doi: 10.1016/j.scitotenv.2019.134606. DOI: https://doi.org/10.1016/j.scitotenv.2019.134606

Humphreys J, O’Connell K, Casey IA. Nitrogen flows and balances in four grassland-based systems of dairy production on a clay-loam soil in a moist temperate climate. Grass Forage Sci. 2008;63(4):467-80. Doi: 10.1111/j.1365-2494.2008.00660.x. DOI: https://doi.org/10.1111/j.1365-2494.2008.00660.x

INALE. Encuesta 2014: resultados definitivos agrupados [Internet]. Montevideo: INALE; 2019 [cited 2024 Feb 29]. Available from: https://www.inale.org/estadisticas/encuesta-2014-resultados-definitivos-agrupados/

INALE. Encuesta Lechera 2019: resultados definitivos [Internet]. Montevideo: INALE; 2021 [cited 2024 Feb 29]. Available from: https://www.inale.org/estadisticas/encuesta-lechera-2019-resultados-definitivos/

Ledgard SF, Steele KW. Biological nitrogen fixation in mixed legume/grass pastures. Plant and Soil. 1992;141:137-53. Doi: 10.1007/BF00011314. DOI: https://doi.org/10.1007/978-94-017-0910-1_8

Leip A, Bodirsky BL, Kugelberg S. The role of nitrogen in achieving sustainable food systems for healthy diets. Glob Food Sec. 2021;28:100408. Doi: 10.1016/j.gfs.2020.100408. DOI: https://doi.org/10.1016/j.gfs.2020.100408

Luo J, Ledgard S. New Zealand dairy farm systems and key environmental effects. Front Agric Sci Eng. 2021;8(1):148-58. Doi: 10.15302/J-FASE-2020372. DOI: https://doi.org/10.15302/J-FASE-2020372

Lussich F. Variabilidad de la fijación biológica de nitrógeno de leguminosas forrajeras en Uruguay: posibles causas y consecuencias nutricionales [master’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2020. 102p.

Mcdonald P, Edwards RA, Greenhalgh JFD, Morgan CA. Animal nutrition. Englewood Cliffs: Prentice Hall; 1995. 696p.

McDowell RW, Rotz CA, Oenema J, Macintosh KA. Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems. Nat Food. 2022;3(12):1065-74. Doi: 10.1038/s43016-022-00644-2. DOI: https://doi.org/10.1038/s43016-022-00644-2

Mihailescu E, Murphy PNC, Ryan W, Casey IA, Humphreys J. Nitrogen balance and use efficiency on twenty-one intensive grass-based dairy farms in the South of Ireland. J Agric Sci. 2014;152(5):843-59. Doi: 10.1017/S0021859614000045. DOI: https://doi.org/10.1017/S0021859614000045

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Anuario estadístico agropecuario 2020 [Internet]. Montevideo: MGAP; 2020 [cited 2024 Feb 29]. Available from: https://bit.ly/3UXE8s6

OECD; FAO. OECD-FAO agricultural outlook 2021-2030. Paris: OECD Publishing; 2021. 337p. Doi: 10.1787/19428846-en. DOI: https://doi.org/10.1787/19428846-en

Oenema J, Oenema O. Intensification of grassland-based dairy production and its impacts on land, nitrogen and phosphorus use efficiencies. Front Agric Sci Eng. 2021;8(1):130-47. Doi: 10.15302/J-FASE-2020376. DOI: https://doi.org/10.15302/J-FASE-2020376

Oenema J, Oenema O. Unraveling feed and nutrient use effciencies in grassland based dairy farms. Front Sustain Food Syst. 2022;6:846561. Doi: 10.3389/fsufs.2022.846561. DOI: https://doi.org/10.3389/fsufs.2022.846561

Ortega G, Chilibroste P, Garrido JM, Waller A, Fariña SR, Lattanzi FA. Monitoring herbage mass and pasture growth rate of large grazing areas: a comparison of the correspondence, cost and reliability of indirect methods. J Agric Sci. 2023;161:502-11. Doi: 10.1017/S0021859623000333. DOI: https://doi.org/10.1017/S0021859623000333

Ortega G, Nuñez T, Custodio D, Mello R, López Y, Chilibroste P. Effect of stocking rate on pasture production and utilisation on a grazing dairy system during winter and spring. In: Abstracts of the 2018 American Dairy Science Association Annual meeting. Knoxville: American Dairy Science Association; 2018. p. 257.

Pinxterhuis JB, Beare MH, Edwards GR, Collins RP, Dillon P, Oenema J. Eco-efficient pasture based dairy farm systems: a comparison of New Zealand, The Netherlands and Ireland. In: Grassland and forages in high output dairy farming systems. Wageningen: Grassland Science in Europe; 2015. p. 349-66.

Powell JM, Gourley CJP, Rotz CA, Weaver DM. Nitrogen use efficiency: A potential performance indicator and policy tool for dairy farms. Environ Sci Policy. 2010;13(3):217-28. Doi: 10.1016/j.envsci.2010.03.007. DOI: https://doi.org/10.1016/j.envsci.2010.03.007

Quemada M, Lassaletta L, Jensen LS, Godinot O, Brentrup F, Buckley C, Foray S, Hvid SK, Oenema J, Richards KG, Oenema O. Exploring nitrogen indicators of farm performance among farm types across several European case studies. Agric Syst. 2020;177:102689. Doi: 10.1016/j.agsy.2019.102689. DOI: https://doi.org/10.1016/j.agsy.2019.102689

Rawnsley RP, Smith AP, Christie KM, Harrison MT, Eckard RJ. Current and future direction of nitrogen fertiliser use in Australian grazing systems. Crop Pasture Sci. 2019;70(12):1034-43. Doi: 10.1071/CP18566. DOI: https://doi.org/10.1071/CP18566

Ros MBH, Godber OF, Olivo AJ, Reed KF, Ketterings QM. Key nitrogen and phosphorus performance indicators derived from farm-gate mass balances on dairies. J Dairy Sci. 2023;106(5):3268-86. Doi: 10.3168/jds.2022-22297. DOI: https://doi.org/10.3168/jds.2022-22297

Soussana JF, Lemaire G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric Ecosyst Environ. 2014;190:9-17. Doi: 10.1016/j.agee.2013.10.012. DOI: https://doi.org/10.1016/j.agee.2013.10.012

Stirling S. Estrategias de intensificación para sistemas lecheros pastoriles en Uruguay: análisis biofísico y del potencial impacto ambiental [doctoral’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Veterinaria; 2022. 155p.

Stirling S, Delaby L, Mendoza A, Fariña S. Intensification strategies for temperate hot-summer grazing dairy systems in South America: effects of feeding strategy and cow genotype. J Dairy Sci. 2021;104(12):12647-63. Doi: 10.3168/jds.2021-20507. DOI: https://doi.org/10.3168/jds.2021-20507

Stott KJ, Gourley CJP. Intensification, nitrogen use and recovery in grazing-based dairy systems. Agric Syst. 2016;144:101-12. Doi: 10.1016/j.agsy.2016.01.003. DOI: https://doi.org/10.1016/j.agsy.2016.01.003

Treacy M, Humphreys J, Namara KM, Browne R, Teagasc CJW. Farm-gate nitrogen balances on intensive dairy farms in the south west of Ireland. Ir J Agric Food Res. 2008;47:105-17.

Downloads

Published

2024-05-23

How to Cite

1.
Stirling S, Lussich F, Ortega G, La Manna A, Pedemonte A, Artagaveytia J, et al. Balancing nitrogen at the farm gate: Economic-environmental sustainability trade-off in pastoral dairy systems of Uruguay. Agrocienc Urug [Internet]. 2024 May 23 [cited 2024 Jun. 17];28(NE1):e1243. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1243

Issue

Section

Article
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)

1 2 > >>