Metodología gradual para mitigar las emisiones de GEI y las pérdidas de nutrientes en los sistemas integrados agrícola-ganadera
DOI:
https://doi.org/10.31285/AGRO.29.1330Palabras clave:
agroecosistemas, sistemas integrados agrícola-ganadera, emisiones de GEI, pérdidas de nutrientes, transiciónResumen
El sector agrícola debe reducir las pérdidas de emisiones de gases de efecto invernadero (GEI), nutrientes e insumos debido al cambio climático y la degradación de ecosistemas. Los sistemas de producción integrados de agricultura y ganadería pueden mejorar la circularidad del carbono y los nutrientes. Se propone una metodología holística para ayudar a los productores a desarrollar estrategias que reduzcan el impacto ambiental y aumenten la resiliencia del sistema mediante prácticas circulares y basadas en ecosistemas.
Esta metodología, parte del proyecto Integrity (EraNet), se organiza en cuatro etapas. La primera se centra en maximizar la eficiencia en la gestión de cultivos y animales, buscando mejorar la producción y la calidad. La segunda etapa desarrolla estrategias para reducir pérdidas de nutrientes y emisiones, incluyendo la gestión de efluentes y emisiones entéricas. La tercera promueve la integración entre animales y cultivos, optimizando la circularidad de nutrientes e insumos. Finalmente, la cuarta etapa se enfoca en estrategias de secuestro de carbono para alcanzar la neutralidad de carbono y fomentar soluciones basadas en servicios ecosistémicos.
Al guiar a los productores a través de estas etapas, la metodología identifica acciones de alto impacto que pueden implementarse rápidamente o que requieren cambios estructurales a largo plazo, proporcionando una herramienta valiosa para iniciar la transición hacia sistemas agrícolas más resilientes.
Descargas
Referencias bibliográficas
Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K. Framing and Context. In: IPCC, editor. Global Warming of 1.5°C. Cambridge: Cambridge University Press; 2019. p. 49-92.
Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, Oh J, Dijkstra J, Bannink A, Bayat AR, Crompton LA, Eugène MA, Enahoro D, Kebreab E, Kreuzer M, McGee M, Martin C, Newbold CJ, Reynolds CK, Schwarm A, Shingfield KJ, Veneman JB, Yáñez-Ruiz DR, Yu Z. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc Natl Acad Sci U S A. 2022;119(20):e2111294119. Doi: 10.1073/pnas.2111294119. DOI: https://doi.org/10.1073/pnas.2111294119
Bačėninaitė D, Džermeikaitė K, Antanaitis R. Global warming and dairy cattle: how to control and reduce methane emission. Animals (Basel). 2022;12(19):2687. Doi: 10.3390/ani12192687. DOI: https://doi.org/10.3390/ani12192687
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Current enteric methane mitigation options. J Dairy Sci. 2022;105(12):9297-326. Doi: 10.3168/jds.2022-22091. DOI: https://doi.org/10.3168/jds.2022-22091
Darré E, Llanos E, Astigarraga L, Cadenazzi M, Picasso V. Do pasture-based mixed dairy systems with higher milk production have lower environmental impacts?: a Uruguayan case study. N Zeal J Agr Res. 2021;64:444-62. Doi: 10.1080/00288233.2020.1750433. DOI: https://doi.org/10.1080/00288233.2020.1750433
Díaz de Otálora X, Amon B, Balaine L, Dragoni F, Estellés F, Ragaglini G, Kieronczyk M, Jørgensen GHM, del Prado A. Influence of farm diversity on nitrogen and greenhouse gas emission sources from key European dairy cattle systems: a step towards emission mitigation and nutrient circularity. Agric Syst. 2024;216:103902. Doi: 10.1016/j.agsy.2024.103902. DOI: https://doi.org/10.1016/j.agsy.2024.103902
El Bilali H. Research on agro-food sustainability transitions: a systematic review of research themes and an analysis of research gaps. J Clean Prod. 2019;221:353-64. Doi: 10.1016/j.jclepro.2019.02.232. DOI: https://doi.org/10.1016/j.jclepro.2019.02.232
FAO. Greenhouse gas emissions from agrifood systems: global, regional and country trends, 2000-2020. Rome: FAO; 2024. 11p.
Garcia L, Celette F, Gary C, Ripoche A, Valdés-Gómez H, Metay A. Management of service crops for the provision of ecosystem services in vineyards: a review. Agric Ecosyst Environ. 2018;251:158-70. Doi: 10.1016/j.agee.2017.09.030. DOI: https://doi.org/10.1016/j.agee.2017.09.030
Glibert PM. From hogs to HABs: impacts of industrial farming in the US on nitrogen and phosphorus and greenhouse gas pollution. Biogeochemistry. 2020;150(2):139-80. Doi: 10.1007/s10533-020-00691-6. DOI: https://doi.org/10.1007/s10533-020-00691-6
Grigorieva E, Livenets A, Stelmakh E. Adaptation of agriculture to climate change: a scoping review. Climate. 2023;11(10):202. Doi: 10.3390/cli11100202. DOI: https://doi.org/10.3390/cli11100202
Hercher-Pasteur J, Loiseau E, Sinfort C, Hélias A. Identifying the resource use and circularity in farm systems: Focus on the energy analysis of agroecosystems. Resour Conserv Recycl. 2021;169:105502. Doi: 10.1016/j.resconrec.2021.105502. DOI: https://doi.org/10.1016/j.resconrec.2021.105502
Hong C, Burney JA, Pongratz J, Nabel JEMS, Mueller ND, Jackson RB, Davis SJ. Global and regional drivers of land-use emissions in 1961-2017. Nature. 2021;589(7843):554-61. Doi: 10.1038/s41586-020-03138-y. DOI: https://doi.org/10.1038/s41586-020-03138-y
Koppelmäki K, Helenius J, Schulte RPO. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour Conserv Recycl. 2021;164:105218. Doi: 10.1016/j.resconrec.2020.105218. DOI: https://doi.org/10.1016/j.resconrec.2020.105218
Martin G, Moraine M, Ryschawy J, Magne MA, Asai M, Sarthou JP, Duru M, Therond O. Crop–livestock integration beyond the farm level: a review. Agron Sustain Dev. 2016;36:53. Doi: 10.1007/s13593-016-0390-x. DOI: https://doi.org/10.1007/s13593-016-0390-x
McDowell RW, Rotz CA, Oenema J, Macintosh KA. Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems. Nat Food. 2022;3(12):1065-74. Doi: 10.1038/s43016-022-00644-2. DOI: https://doi.org/10.1038/s43016-022-00644-2
Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O'Rourke S, Winowiecki L. Soil carbon 4 per mille. Geoderma. 2017;292:59-86. Doi: 10.1016/j.geoderma.2017.01.002. DOI: https://doi.org/10.1016/j.geoderma.2017.01.002
Ministerio de Ambiente (UY). Informe del inventario nacional de gases de efecto invernadero Uruguay: serie 1990–2022. Montevideo: MA; 2024. 517p.
Miranda ND, Tuomisto HL, McCulloch MD. Meta-analysis of greenhouse gas emissions from anaerobic digestion processes in dairy farms. Environ Sci Technol. 2015;49(8):5211-9. Doi: 10.1021/acs.est.5b00018. DOI: https://doi.org/10.1021/acs.est.5b00018
Nilsson P, Bommarco R, Hansson H, Kuns B, Schaak H. Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms. Ecol Econ. 2022;198:107465. Doi: 10.1016/j.ecolecon.2022.107465. DOI: https://doi.org/10.1016/j.ecolecon.2022.107465
Odum HT. Environment, power and society. New York: Wiley; 1971. 331p.
Rockström J, Edenhofer O, Gaertner J, DeClerck F. Planet-proofing the global food system. Nat Food. 2020;1(1):3-5. Doi: 10.1038/s43016-019-0010-4. DOI: https://doi.org/10.1038/s43016-019-0010-4
Rótolo GC, Francis C, Craviotto RM, Ulgiati S. Environmental assessment of maize production alternatives: traditional, intensive and GMO-based cropping patterns. Ecol Indic. 2015;57:48-60. Doi: 10.1016/j.ecolind.2015.03.036. DOI: https://doi.org/10.1016/j.ecolind.2015.03.036
Sánchez AC, Kamau HN, Grazioli F, Jones SK. Financial profitability of diversified farming systems: a global meta-analysis. Ecol Econ. 2022;201:107595. Doi: 10.1016/j.ecolecon.2022.107595. DOI: https://doi.org/10.1016/j.ecolecon.2022.107595
Schiller KJF, Klerkx L, Poortvliet PM, Godek W. Exploring barriers to the agroecological transition in Nicaragua: a technological innovation systems approach. Agroecol Sustain Food Syst. 2020;44(1):88-132. Doi: 10.1080/21683565.2019.1602097. DOI: https://doi.org/10.1080/21683565.2019.1602097
Siddique IA, Grados D, Chen J, Lærke PE, Jørgensen U. Soil organic carbon stock change following perennialization: a meta-analysis. Agron Sustain Dev. 2023;43(5):58. Doi: 10.1007/s13593-023-00912-w. DOI: https://doi.org/10.1007/s13593-023-00912-w
Tibi A, Martinet V, Vialatte A. Protéger les cultures par la diversité végétale. Versailles: Éditions Quae; 2023. 132p. DOI: https://doi.org/10.35690/978-2-7592-3733-3
van Gastelen S, Burgers EEA, Dijkstra J, de Mol R, Muizelaar W, Walker N, Bannink A. Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein-Friesian dairy cows. J Dairy Sci. 2024;107(8):5556-73. Doi: 10.3168/jds.2023-24198. DOI: https://doi.org/10.3168/jds.2023-24198
van Zanten HHE, Simon W, van Selm B, Wacker J, Maindl TI, Frehner A, Hijbeek R, van Ittersum MK, Herrero M. Circularity in Europe strengthens the sustainability of the global food system. Nat Food. 2023;4(4):320-30. Doi: 10.1038/s43016-023-00734-9. DOI: https://doi.org/10.1038/s43016-023-00734-9
Van Zanten HHE, Van Ittersum MK, De Boer IJM. The role of farm animals in a circular food system. Glob Food Sec. 2019;21:18-22. Doi: 10.1016/j.gfs.2019.06.003. DOI: https://doi.org/10.1016/j.gfs.2019.06.003
Vermunt DA, Wojtynia N, Hekkert MP, Van Dijk J, Verburg R, Verweij PA, Wassen M, Runhaar H. Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: a systemic analysis of Dutch dairy farming. Agric Syst. 2022;195:103280. Doi: 10.1016/j.agsy.2021.103280. DOI: https://doi.org/10.1016/j.agsy.2021.103280
Vidal Legaz B, Maia De Souza D, Teixeira RFM, Antón A, Putman B, Sala S. Soil quality, properties, and functions in life cycle assessment: an evaluation of models. J Clean Prod. 2017;140:502-15. Doi: 10.1016/j.jclepro.2016.05.077. DOI: https://doi.org/10.1016/j.jclepro.2016.05.077
Yang X, Xiong J, Du T, Ju X, Gan Y, Li S, Xia L, Shen Y, Pacenka S, Steenhuis TS, Siddique KHM, Kang S, Butterbach-Bahl K. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat Commun. 2024;15(1):198. Doi: 10.1038/s41467-023-44464-9. DOI: https://doi.org/10.1038/s41467-023-44464-9
Yuan J, Liao C, Zhang T, Guo C, Liu J. Advances in ecology research on integrated rice field aquaculture in China. Water. 2022;14:2333. Doi: 10.3390/w14152333. DOI: https://doi.org/10.3390/w14152333
Zhang J, Van Der Heijden MGA, Zhang F, Bender SF. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Front Agric Sci Eng. 2020;7(3):236-42. Doi: 10.15302/J-FASE-2020336. DOI: https://doi.org/10.15302/J-FASE-2020336

Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Agrociencia Uruguay

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Estadísticas de artículo | |
---|---|
Vistas de resúmenes | |
Vistas de PDF | |
Descargas de PDF | |
Vistas de HTML | |
Otras vistas |