Metodologia graduada para mitigar as emissões de GEE e as perdas de nutrientes em sistemas integrados de produção agropecuária
DOI:
https://doi.org/10.31285/AGRO.29.1330Palavras-chave:
agroecossistemas, sistemas integrados de produção agropecuária, emissões de gases com efeito de estufa, perdas de nutrientes, transiçãoResumo
O setor agrícola precisa mitigar as perdas de emissões de gases de efeito estufa (GEE), nutrientes e insumos devido à mudança climática e à degradação dos ecossistemas. Sistemas de produção integrados de culturas e pecuária podem aumentar a circularidade do carbono e dos nutrientes. Uma metodologia holística foi proposta para orientar produtores na redução dos impactos ambientais e melhorar a resiliência do sistema por meio de práticas circulares e baseadas em ecossistemas.
Desenvolvida no projeto Integrity (EraNet), a metodologia é organizada em quatro etapas que abrangem diferentes níveis do sistema de produção, desde os processos produtivos até o agroecossistema. O primeiro estágio foca na maximização da eficiência na gestão de animais e culturas, buscando melhorar a produção e a qualidade. O segundo estágio desenvolve estratégias para reduzir perdas de nutrientes e emissões, incluindo a gestão de efluentes e emissões entéricas. O terceiro estágio promove a integração entre animais e culturas, otimizando arranjos espaciais e a circularidade de nutrientes. Por fim, o quarto estágio envolve o desenvolvimento de estratégias de sequestro de carbono para alcançar a neutralidade de carbono e promover soluções baseadas em serviços ecossistêmicos.
Ao acompanhar os produtores em cada etapa, a metodologia ajuda a identificar ações de alto impacto que podem ser rapidamente implementadas ou que exigem mudanças estruturais a longo prazo, facilitando a transição para sistemas agrícolas mais resilientes.
Downloads
Referências
Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K. Framing and Context. In: IPCC, editor. Global Warming of 1.5°C. Cambridge: Cambridge University Press; 2019. p. 49-92.
Arndt C, Hristov AN, Price WJ, McClelland SC, Pelaez AM, Cueva SF, Oh J, Dijkstra J, Bannink A, Bayat AR, Crompton LA, Eugène MA, Enahoro D, Kebreab E, Kreuzer M, McGee M, Martin C, Newbold CJ, Reynolds CK, Schwarm A, Shingfield KJ, Veneman JB, Yáñez-Ruiz DR, Yu Z. Full adoption of the most effective strategies to mitigate methane emissions by ruminants can help meet the 1.5 °C target by 2030 but not 2050. Proc Natl Acad Sci U S A. 2022;119(20):e2111294119. Doi: 10.1073/pnas.2111294119. DOI: https://doi.org/10.1073/pnas.2111294119
Bačėninaitė D, Džermeikaitė K, Antanaitis R. Global warming and dairy cattle: how to control and reduce methane emission. Animals (Basel). 2022;12(19):2687. Doi: 10.3390/ani12192687. DOI: https://doi.org/10.3390/ani12192687
Beauchemin KA, Ungerfeld EM, Abdalla AL, Alvarez C, Arndt C, Becquet P, Benchaar C, Berndt A, Mauricio RM, McAllister TA, Oyhantçabal W, Salami SA, Shalloo L, Sun Y, Tricarico J, Uwizeye A, De Camillis C, Bernoux M, Robinson T, Kebreab E. Current enteric methane mitigation options. J Dairy Sci. 2022;105(12):9297-326. Doi: 10.3168/jds.2022-22091. DOI: https://doi.org/10.3168/jds.2022-22091
Darré E, Llanos E, Astigarraga L, Cadenazzi M, Picasso V. Do pasture-based mixed dairy systems with higher milk production have lower environmental impacts?: a Uruguayan case study. N Zeal J Agr Res. 2021;64:444-62. Doi: 10.1080/00288233.2020.1750433. DOI: https://doi.org/10.1080/00288233.2020.1750433
Díaz de Otálora X, Amon B, Balaine L, Dragoni F, Estellés F, Ragaglini G, Kieronczyk M, Jørgensen GHM, del Prado A. Influence of farm diversity on nitrogen and greenhouse gas emission sources from key European dairy cattle systems: a step towards emission mitigation and nutrient circularity. Agric Syst. 2024;216:103902. Doi: 10.1016/j.agsy.2024.103902. DOI: https://doi.org/10.1016/j.agsy.2024.103902
El Bilali H. Research on agro-food sustainability transitions: a systematic review of research themes and an analysis of research gaps. J Clean Prod. 2019;221:353-64. Doi: 10.1016/j.jclepro.2019.02.232. DOI: https://doi.org/10.1016/j.jclepro.2019.02.232
FAO. Greenhouse gas emissions from agrifood systems: global, regional and country trends, 2000-2020. Rome: FAO; 2024. 11p.
Garcia L, Celette F, Gary C, Ripoche A, Valdés-Gómez H, Metay A. Management of service crops for the provision of ecosystem services in vineyards: a review. Agric Ecosyst Environ. 2018;251:158-70. Doi: 10.1016/j.agee.2017.09.030. DOI: https://doi.org/10.1016/j.agee.2017.09.030
Glibert PM. From hogs to HABs: impacts of industrial farming in the US on nitrogen and phosphorus and greenhouse gas pollution. Biogeochemistry. 2020;150(2):139-80. Doi: 10.1007/s10533-020-00691-6. DOI: https://doi.org/10.1007/s10533-020-00691-6
Grigorieva E, Livenets A, Stelmakh E. Adaptation of agriculture to climate change: a scoping review. Climate. 2023;11(10):202. Doi: 10.3390/cli11100202. DOI: https://doi.org/10.3390/cli11100202
Hercher-Pasteur J, Loiseau E, Sinfort C, Hélias A. Identifying the resource use and circularity in farm systems: Focus on the energy analysis of agroecosystems. Resour Conserv Recycl. 2021;169:105502. Doi: 10.1016/j.resconrec.2021.105502. DOI: https://doi.org/10.1016/j.resconrec.2021.105502
Hong C, Burney JA, Pongratz J, Nabel JEMS, Mueller ND, Jackson RB, Davis SJ. Global and regional drivers of land-use emissions in 1961-2017. Nature. 2021;589(7843):554-61. Doi: 10.1038/s41586-020-03138-y. DOI: https://doi.org/10.1038/s41586-020-03138-y
Koppelmäki K, Helenius J, Schulte RPO. Nested circularity in food systems: a Nordic case study on connecting biomass, nutrient and energy flows from field scale to continent. Resour Conserv Recycl. 2021;164:105218. Doi: 10.1016/j.resconrec.2020.105218. DOI: https://doi.org/10.1016/j.resconrec.2020.105218
Martin G, Moraine M, Ryschawy J, Magne MA, Asai M, Sarthou JP, Duru M, Therond O. Crop–livestock integration beyond the farm level: a review. Agron Sustain Dev. 2016;36:53. Doi: 10.1007/s13593-016-0390-x. DOI: https://doi.org/10.1007/s13593-016-0390-x
McDowell RW, Rotz CA, Oenema J, Macintosh KA. Limiting grazing periods combined with proper housing can reduce nutrient losses from dairy systems. Nat Food. 2022;3(12):1065-74. Doi: 10.1038/s43016-022-00644-2. DOI: https://doi.org/10.1038/s43016-022-00644-2
Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, Chaplot V, Chen Z, Cheng K, Das BS, Field DJ, Gimona A, Hedley CB, Hong SY, Mandal B, Marchant BP, Martin M, McConkey BG, Mulder VL, O'Rourke S, Winowiecki L. Soil carbon 4 per mille. Geoderma. 2017;292:59-86. Doi: 10.1016/j.geoderma.2017.01.002. DOI: https://doi.org/10.1016/j.geoderma.2017.01.002
Ministerio de Ambiente (UY). Informe del inventario nacional de gases de efecto invernadero Uruguay: serie 1990–2022. Montevideo: MA; 2024. 517p.
Miranda ND, Tuomisto HL, McCulloch MD. Meta-analysis of greenhouse gas emissions from anaerobic digestion processes in dairy farms. Environ Sci Technol. 2015;49(8):5211-9. Doi: 10.1021/acs.est.5b00018. DOI: https://doi.org/10.1021/acs.est.5b00018
Nilsson P, Bommarco R, Hansson H, Kuns B, Schaak H. Farm performance and input self-sufficiency increases with functional crop diversity on Swedish farms. Ecol Econ. 2022;198:107465. Doi: 10.1016/j.ecolecon.2022.107465. DOI: https://doi.org/10.1016/j.ecolecon.2022.107465
Odum HT. Environment, power and society. New York: Wiley; 1971. 331p.
Rockström J, Edenhofer O, Gaertner J, DeClerck F. Planet-proofing the global food system. Nat Food. 2020;1(1):3-5. Doi: 10.1038/s43016-019-0010-4. DOI: https://doi.org/10.1038/s43016-019-0010-4
Rótolo GC, Francis C, Craviotto RM, Ulgiati S. Environmental assessment of maize production alternatives: traditional, intensive and GMO-based cropping patterns. Ecol Indic. 2015;57:48-60. Doi: 10.1016/j.ecolind.2015.03.036. DOI: https://doi.org/10.1016/j.ecolind.2015.03.036
Sánchez AC, Kamau HN, Grazioli F, Jones SK. Financial profitability of diversified farming systems: a global meta-analysis. Ecol Econ. 2022;201:107595. Doi: 10.1016/j.ecolecon.2022.107595. DOI: https://doi.org/10.1016/j.ecolecon.2022.107595
Schiller KJF, Klerkx L, Poortvliet PM, Godek W. Exploring barriers to the agroecological transition in Nicaragua: a technological innovation systems approach. Agroecol Sustain Food Syst. 2020;44(1):88-132. Doi: 10.1080/21683565.2019.1602097. DOI: https://doi.org/10.1080/21683565.2019.1602097
Siddique IA, Grados D, Chen J, Lærke PE, Jørgensen U. Soil organic carbon stock change following perennialization: a meta-analysis. Agron Sustain Dev. 2023;43(5):58. Doi: 10.1007/s13593-023-00912-w. DOI: https://doi.org/10.1007/s13593-023-00912-w
Tibi A, Martinet V, Vialatte A. Protéger les cultures par la diversité végétale. Versailles: Éditions Quae; 2023. 132p. DOI: https://doi.org/10.35690/978-2-7592-3733-3
van Gastelen S, Burgers EEA, Dijkstra J, de Mol R, Muizelaar W, Walker N, Bannink A. Long-term effects of 3-nitrooxypropanol on methane emission and milk production characteristics in Holstein-Friesian dairy cows. J Dairy Sci. 2024;107(8):5556-73. Doi: 10.3168/jds.2023-24198. DOI: https://doi.org/10.3168/jds.2023-24198
van Zanten HHE, Simon W, van Selm B, Wacker J, Maindl TI, Frehner A, Hijbeek R, van Ittersum MK, Herrero M. Circularity in Europe strengthens the sustainability of the global food system. Nat Food. 2023;4(4):320-30. Doi: 10.1038/s43016-023-00734-9. DOI: https://doi.org/10.1038/s43016-023-00734-9
Van Zanten HHE, Van Ittersum MK, De Boer IJM. The role of farm animals in a circular food system. Glob Food Sec. 2019;21:18-22. Doi: 10.1016/j.gfs.2019.06.003. DOI: https://doi.org/10.1016/j.gfs.2019.06.003
Vermunt DA, Wojtynia N, Hekkert MP, Van Dijk J, Verburg R, Verweij PA, Wassen M, Runhaar H. Five mechanisms blocking the transition towards ‘nature-inclusive’ agriculture: a systemic analysis of Dutch dairy farming. Agric Syst. 2022;195:103280. Doi: 10.1016/j.agsy.2021.103280. DOI: https://doi.org/10.1016/j.agsy.2021.103280
Vidal Legaz B, Maia De Souza D, Teixeira RFM, Antón A, Putman B, Sala S. Soil quality, properties, and functions in life cycle assessment: an evaluation of models. J Clean Prod. 2017;140:502-15. Doi: 10.1016/j.jclepro.2016.05.077. DOI: https://doi.org/10.1016/j.jclepro.2016.05.077
Yang X, Xiong J, Du T, Ju X, Gan Y, Li S, Xia L, Shen Y, Pacenka S, Steenhuis TS, Siddique KHM, Kang S, Butterbach-Bahl K. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat Commun. 2024;15(1):198. Doi: 10.1038/s41467-023-44464-9. DOI: https://doi.org/10.1038/s41467-023-44464-9
Yuan J, Liao C, Zhang T, Guo C, Liu J. Advances in ecology research on integrated rice field aquaculture in China. Water. 2022;14:2333. Doi: 10.3390/w14152333. DOI: https://doi.org/10.3390/w14152333
Zhang J, Van Der Heijden MGA, Zhang F, Bender SF. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Front Agric Sci Eng. 2020;7(3):236-42. Doi: 10.15302/J-FASE-2020336. DOI: https://doi.org/10.15302/J-FASE-2020336

Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Agrociencia Uruguay

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Métricas do artigo | |
---|---|
Vistas abstratas | |
Visualizações da cozinha | |
Visualizações de PDF | |
Visualizações em HTML | |
Outras visualizações |