Zoneamento climático vitícola multicritério das Sierras Pampeanas Cordobesas (2002-2022) usando dados de satélite

Autores

DOI:

https://doi.org/10.31285/AGRO.29.1536

Palavras-chave:

climas de vinhedos, geadas, dados de satélite, zoneamento climático, análise multicritério

Resumo

Para estudar o potencial climático vitícola das Sierras Pampeanas Cordobesas, entre 2002 e 2022, foram calculados e integrados os seguintes índices: Heliotérmico, Seco, Frescor Noturno, temperaturas máximas médias, precipitação, evapotranspiração potencial, amplitude térmica e datas de geadas precoces e tardias. Eles foram calculados a partir de dados obtidos de sensores montados em plataformas de satélite. Os climas vitivinícolas identificados foram avaliados, geolocalizados e delimitados usando um GIS. Os resultados identificaram vinte climas vitícolas, classificando-os em três grupos: a) Com limitações térmicas: 30% da área de estudo HI -3, CI +2 e temperaturas máximas médias > 30°C; b) Com altas temperaturas noturnas: 63% da área de estudo HI +1, CI -1, DI +1; c) 7% da área de estudo sem limitações térmicas HI -1 e HI +1, CI +1, DI +1 e DI -1. Os grupos b e c registram datas de geadas precoces e tardias, respectivamente, o que implica riscos para o desenvolvimento normal da videira. O método desenvolvido permitiu a zonação climática das Sierras Pampeanas Cordobesas em escala regional, mas é necessário confirmar o clima vitivinícola local por meio de estudos in situ.

Downloads

Não há dados estatísticos.

Referências

Anderson J, Jones G, Tait A, Hall A, Trought M. Analysis of viticulture region climate structure and suitability in New Zealand. OENO One. 2012;46(3):149-65. Doi: 10.20870/oeno-one.2012.46.3.1515. DOI: https://doi.org/10.20870/oeno-one.2012.46.3.1515

Arrillaga L, Echeverría G, Izquierdo B, Rey J, Pallante A, Ferrer M. Response of Tannat (Vitis vinifera L.) to pre-flowering leaf removal in a humid climate. OENO One. 2021;55(2):251-66. Doi: 10.20870/oeno-one.2021.55.2.4613. DOI: https://doi.org/10.20870/oeno-one.2021.55.2.4613

Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data. 2018;5:180214. Doi: 10.1038/sdata.2018.214. DOI: https://doi.org/10.1038/sdata.2018.214

Bois B. Viticulture and climate: from global to local. IVES Conference Series [Internet]. 2020 [cited 2025 Jul 21];(Terroir 2020):8p. Available from: https://ives-openscience.eu/6455/

Bravo R, Muñoz M, Quintana J. Heladas: factores atmosféricos, tendencias y efectos en frutales y vides. Boletín INIA. 2020;(17):102.

Chuvieco E. Fundamentos de teledetección espacial. 2a ed. Madrid: Rialp; 2005. 62p.

Coombe B. Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Aust J Grape Wine Res. 1995;1(2):104-10. Doi: 10.1111/j.1755-0238.1995.tb00086.x. DOI: https://doi.org/10.1111/j.1755-0238.1995.tb00086.x

Cucci NJA, Becerra VC. Manual de tratamientos fitosanitarios para cultivos de clima templado bajo riego: Sección III. Tomo I, Vid. Buenos Aires: Ediciones INTA; 2009. 364p.

Ferrer M, Echeverría G, Pereyra G, Salvarrey J, Arrillaga L, Fourment M. Variación del clima de un Terroir y su consecuencia sobre la respuesta de la vid. E3S Web Conf. 2018;50:01002. Doi: 10.1051/e3sconf/20185001002. DOI: https://doi.org/10.1051/e3sconf/20185001002

Ferrer M, Pedocchi R, Michelazzo M, González-Neves G, Carbonneau A. Delimitación y descripción de regiones vitícolas del Uruguay en base al método de clasificación climática multicriterio utilizando índices bioclimáticos adaptados a las condiciones del cultivo. Agrociencia (Uruguay). 2007;11(1):47-56. Doi: 10.31285/AGRO.11.768. DOI: https://doi.org/10.31285/AGRO.11.768

Fourment M, Ferrer M, González-Neves G, Barbeau G, Bonnardot V, Quénol H. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region. Int J Biometeorol. 2017;61(9):1617-28. Doi: 10.1007/s00484-017-1340-2. DOI: https://doi.org/10.1007/s00484-017-1340-2

Gillies S, Ward B, Petersen AS. Rasterio: access to geospatial raster data [Internet]. Version 1.4.3. 2024 [cited 2025 Jul 22]. Available from: https://github.com/rasterio/rasterio

Gouot JC, Smith JP, Holzapfel BP, Walker AR, Barril C. Grape berry flavonoids: a review of their biochemical responses to high and extreme high temperatures. J Exp Bot. 2019;70(2):397-423. Doi: 10.1093/jxb/ery392. DOI: https://doi.org/10.1093/jxb/ery392

Hall A, Jones GV. Spatial analysis of climate in winegrape-growing regions in Australia. Aust J Grape Wine Res. 2010;16(3):389-404. Doi: 10.1111/j.1755-0238.2010.00100.x. DOI: https://doi.org/10.1111/j.1755-0238.2010.00100.x

Huglin M. Nouveau mode d’évaluation des possibilités héliothermiques d’un milieu viticole. C R Acad Agric Fr. 1978;64:1117-26.

Instituto Nacional de Vitivinicultura. Informe anual de superficie 2023 [Internet]. Mendoza: INV; 2024 [cited 2025 Jul 21]. 125p. Available from: https://www.argentina.gob.ar/sites/default/files/2018/10/informe_anual_de_superficie_2023.pdf

Jones G, Duff A, Hall A, Myers J. Spatial analysis of climate in winegrape growing regions in the Western United States. Am J Enol Vitic. 2010;61(3):313-26. Doi: 10.5344/ajev.2010.61.3.313. DOI: https://doi.org/10.5344/ajev.2010.61.3.313

Jones J, Wilson S, Lee G, Smith A. Effect of frost damage and pruning on current crop and return crop of Pinot Noir. N Z J Crop Hortic Sci. 2010;38(3):209-16. Doi: 10.1080/01140671.2010.498402. DOI: https://doi.org/10.1080/01140671.2010.498402

Keller M. The science of grapevines: anatomy and physiology. 2nd ed. Amsterdam: Elsevier; 2015. 509p.

Kliewer WM. Influence of environment on metabolism of organic acids and carbohydrates in Vitis Vinifera: I. temperature. Plant Physiol. 1964;39(6):869-80. Doi: 10.1104/pp.39.6.869. DOI: https://doi.org/10.1104/pp.39.6.869

Kotikot S, Flores A, Griffin R, Nyaga J, Case J, Mugo R, Sedah A, Adams E, Limaye A, Irwin DE. Statistical characterization of frost zones: case of tea freeze damage in the Kenyan highlands. Int J Appl Earth Obs Geoinf. 2020;84:101971. Doi: 10.1016/j.jag.2019.101971. DOI: https://doi.org/10.1016/j.jag.2019.101971

Lennon JJ, Turner JRG. Predicting the spatial distribution of climate: temperature in Great Britain. J Anim Ecol. 1995;64(3):370-80. DOI: https://doi.org/10.2307/5898

Londo JP, Martinson TE. Grapevine winter survival and prospects in an age of changing climate [Internet]. Ithaca: Appellation Cornell; 2016 [cited 2025 Jul 21]. 7p. Available from: https://ecommons.cornell.edu/server/api/core/bitstreams/a87f7374-e571-4176-9282-7ec3259b23c7/content

Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot. 2007;58(8):1935-45. Doi: 10.1093/jxb/erm055. DOI: https://doi.org/10.1093/jxb/erm055

Morin G, Le Roux R, Lemasle P-G, Quénol H. Mapping bioclimatic indices by downscaling MODIS land surface temperature: case study of the Saint-Emilion area. Remote Sens. 2020;13(1):4. Doi: 10.3390/rs13010004. DOI: https://doi.org/10.3390/rs13010004

Noi P, Degener J, Kappas M. Comparison of multiple linear regression, Cubist regression, and random forest algorithms to estimate daily air surface temperature from dynamic combinations of MODIS LST data. Remote Sens. 2017;9(5):398. Doi: 10.3390/rs9050398. DOI: https://doi.org/10.3390/rs9050398

Ojeda H. Riego cualitativo de precisión en vid. Revista Internet de Viticultura y Enología [Internet]. 2007 [cited 2025 Jul 21]; 5(1):10p. Available from: https://www.infowine.com/wp-content/uploads/2024/04/libretto4415-01-1.pdf

Organisation Internationale de la Vigne et du Vin. Lineas directrices de la OIV sobre metodologías de zonificación vitivinícola a nivel del suelo y del clima: Resolución OIV/VITI 423/2012 [Internet]. París: OIV; 2012 [cited 2025 Jul 21]. 18p. Available from: https://www.oiv.int/public/medias/401/viti-2012-1-es.pdf

Ovando G, Sayago S, Bellini Y, Bocco M. Evaluación del desempeño de productos satelitales para estimar precipitación en Córdoba (Argentina). In: 10º Congreso Argentino de AgroInformática. Buenos Aires: SADIO; 2018. p. 203-14.

Ovando G, Sayago S, Bocco M. Development of machine learning models for air temperature estimation using MODIS data. Agriscientia. 2022;39:15-28. DOI: https://doi.org/10.31047/1668.298x.v39.n1.33225

Palliotti A, Cartechini A, Silvestroni O, Mattioli S. Respiration activity in different above-ground organs of Vitis vinifera L. in response to temperature and developmental stage. In: Williams LE, editor. Proceedings of the seventh international symposium on grapevine physiology and biotechnology. Leuven: International Society of Horticultural Science; 2005. p. 159-65. DOI: https://doi.org/10.17660/ActaHortic.2005.689.16

Papalini E. La invisibilidad de la decadencia de los vinos de Córdoba. Villa María: Universidad Nacional Villa María; 2016. 11p.

Phan TN, Kappas M, Nguyen KT, Tran TP, Tran QV, Emam AR. Evaluation of MODIS land surface temperature products for daily air surface temperature estimation in northwest Vietnam. Int J Remote Sens. 2019;40(14):5544-62. Doi: 10.1080/01431161.2019.1580789. DOI: https://doi.org/10.1080/01431161.2019.1580789

QGIS Development Team. QGIS Geographic Information System [Internet]. Version 3.28 “Firenze”. [place unknown]: QGIS Association; 2022 [cited 2025 Jul 21]. Available from: https://qgis.org/

Rienth M, Vigneron N, Darriet P, Sweetman C, Burbidge C, Bonghi C, Walker RP, Famiani F, Castellarin SD. Grape berry secondary metabolites and their modulation by abiotic factors in a climate change scenario: a review. Front Plant Sci. 2021;12:643258. Doi: 10.3389/fpls.2021.643258. DOI: https://doi.org/10.3389/fpls.2021.643258

Riou C. The effect of climate on grape ripening: application to the zoning of sugar content in the European Community. Luxembourg: Office des Publications Officielles des Communautés Européennes; 1994. 336p.

Running S, Mu Q, Zhao M. MODIS/Terra Net Evapotranspiration 8‑Day L4 Global 500 m SIN Grid V061 [Data set]. Sioux Falls: NASA LP DAAC; 2021 Doi: 10.5067/MODIS/MOD16A2.061.

Sierra E, Marchiri H, Giorgini H, Giorgini D. Disponibilidad actual de agua edáfica para los cultivos de granos en la Argentina. Rev Fac Agron UBA. 1997;17:37-42.

Spayd SE, Tarara JM, Mee DL, Ferguson JC. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot Berries. Am J Enol Vitic. 2002;53(3):171-82. Doi: 10.5344/ajev.2002.53.3.171. DOI: https://doi.org/10.5344/ajev.2002.53.3.171

Sweetman C, Sadras VO, Hancock RD, Soole KL, Ford CM. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J Exp Bot. 2014;65(20):5975-88. Doi: 10.1093/jxb/eru343. DOI: https://doi.org/10.1093/jxb/eru343

Tonietto J. Les macroclimats viticoles mondiaux et l’influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France [doctoral dissertation]. Montpellier (FR): L’Ecole Nationale Supérieure Agronomique de Montpellier; 1999. 236p.

Tonietto J, Carbonneau A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric For Meteorol. 2004;124(1-2):81-97. Doi: 10.1016/j.agrformet.2003.06.001. DOI: https://doi.org/10.1016/j.agrformet.2003.06.001

Valdés-Gómez F, Calonnec H, Roudet L, Gary M. A multivariate analysis of combined effects of (micro)climate, vegetative and reproductive growth on grey mould incidence in grapevine. Integr Prot Vitic. 2008;36:91-4.

van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubourdieu D. Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic. 2004;55(3):207-17. Doi: 10.5344/ajev.2004.55.3.207. DOI: https://doi.org/10.5344/ajev.2004.55.3.207

Vancutsem C, Ceccato P, Dinku T, Connor SJ. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ. 2010;114(2):449-65. Doi: 10.1016/j.rse.2009.10.002. DOI: https://doi.org/10.1016/j.rse.2009.10.002

Wang K, Sun J, Cheng G, Jiang H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet Plateau. J Mt Sci. 2011;8:808-16. Doi: 10.1007/s11629-011-1090-2. DOI: https://doi.org/10.1007/s11629-011-1090-2

Downloads

Publicado

2025-08-01

Como Citar

1.
Bertello J, Ovando G, Ferrer M. Zoneamento climático vitícola multicritério das Sierras Pampeanas Cordobesas (2002-2022) usando dados de satélite. Agrocienc Urug [Internet]. 1º de agosto de 2025 [citado 17º de outubro de 2025];29(NE2):e1536. Disponível em: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1536

Edição

Seção

Artigo
QR Code

Métricas

Métricas do artigo
Vistas abstratas
Visualizações da cozinha
Visualizações de PDF
Visualizações em HTML
Outras visualizações

Artigos mais lidos pelo mesmo(s) autor(es)