New challenges for Uruguayan viticulture

water management in the context of a changing climate




Tannat, irrigation, sustainability, site-specific management, water deficit


Climate scenarios in the medium and long term (2010-2070) foresee increased summer rainfall for Uruguay and the region, with increased water deficits and excess episodes. Although at the international level irrigation in viticulture has a long experience and tradition, at the local level (Uruguay), only 10% of the vineyard surface area implements a fixed or complementary system for water supply in their crops. This work aimed to model the crop water requirements for a vineyard in southern Uruguay based on pedo-climatic variables. In addition, the plant response to controlled deficit irrigation was evaluated in two consecutive seasons. The experiment was conducted in a 1.1 ha commercial vineyard in Canelones, Uruguay (34°36'S, 56°14W), during two successive seasons (2020-2021). The additional irrigation (I) treatment was compared against a control (C) without irrigation. A controlled water deficit was established from flowering to harvest. The adjustment in the demand was made as a function of a percentage of crop evapotranspiration. The Kc of the crop was estimated using digital tools. The simulation of the water balance made it possible to evaluate the vineyard water needs. Plants subjected to controlled deficit irrigation showed higher vegetative growth, positively impacting yield and the accumulation of sugars and anthocyanins in the berry. Based on our results, a supplementary water supply, at the right doses and time, allows us to face water deficit situations, positively impacting the productive and economic variables. Knowing the variability in a vineyard is necessary to achieve proper irrigation scheduling and optimize water use. New technologies applied to irrigation are an opportunity for winegrowers to obtain more sustainable vineyards and production.


Download data is not yet available.


Abioye EA, Abidin MSZ, Mahmud MSA, Buyamin S, AbdRahman MKI, Otuoze AO, Ramli MSA, Ijike OD. IoT-based monitoring and data-driven modelling of drip irrigation system for mustard leaf cultivation experiment. Inf Process Agric. 2021;8:270-83. Doi: 10.1016/j.inpa.2020.05.004.

Aerny J. Composés azotés des moûts et des vins. RSVAH. 1996;28(3):161-5.

Alatzas A, Theocharis S, Miliordos DE, Kotseridis Y, Koundouras S, Hatzopoulos P. Leaf removal and deficit irrigation have diverse outcomes on composition and gene expression during berry development of Vitis vinifera L. cultivar Xinomavro. OENO One. 2023;57(1):289-305. Doi: 10.20870/oeno-one.2023.57.1.7191.

Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration: guidelines for computing crop water requirements. Rome: FAO; 1998. 300p.

Alliaume F, González Barrios P, Echeverría G, Ferrer M. Characterization of spatial variability of soils within a vineyard for management zones determination. In: Carbonneau A, Torregrosa L, editors. XXth GIESCO International Meeting; 2017 Nov; Mendoza, Argentina [Internet]. Mendoza: GIESCO; 2017 [cited 2023 Sep 5]. pp. 787-91. Subscription required to view. Available from:

Basile B, Girona J, Behboudian MH, Mata M, Rosello J, Ferré M, Marsal J. Responses of “Chardonnay” to deficit irrigation applied at different phenological stages: vine growth, must composition, and wine quality. Irrig Sci. 2012;30:397-406.

Battilani A, Mannini P, Anconelli S. Grapevine irrigation scheduling in the Po Valley sub-humid area. Irrigazione e Drenaggio. 2000;47(4):15-9.

Bernard N, Zebic O, Deloire A. Estimation de l´état hydrique de vigne par la mesure de la température foliare: un outil au service des professionnels. Le Progrès Agricole et Viticole. 2004;23:539-42.

Bramley RGV, Hamilton RP. Understanding variability in winegrape production systems: 1. Within vineyard variation in yield over several vintages. Aust J Grape Wine Res. 2004;10(1):32-45. Doi: 10.1111/j.1755-0238.2004.tb00006.x.

Bwambale E, Abagale FK, Anornu GK. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: a review. Agric Water Manag. 2022;260:107324. Doi: 10.1016/j.agwat.2021.107324.

Carbonneau A. Aspects qualitatifs. In: Tiercelin JR, Lavoiser T, editors. Proceedings 17th World Congress of Vine and Wine; 1998; Bratislava. Bratislava: Tec & Doc Lavoisier; 1998. pp. 258-76.

Celette F, Gaudin R, Gary C. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur J Agron. 2008;29:153-62. Doi: 10.1016/j.eja.2008.04.007.

Champagnol F. Elements of the physiology of the vine and of general viticulture. Montpellier: Dehan; 1984. 351p.

Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM. Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot. 2010;105(5):661-76. Doi: 10.1093/aob/mcq030.

Cid Y, Miras-Avalos J. Necesidades hídricas del viñedo. Wetwine. 2019;3:4-9.

De Bei R, Fuentes S, Gilliham M, Tyerman S, Edwards E, Bianchini N, Collins C. VitiCanopy: a free computer App to estimate canopy vigor and porosity for grapevine. Sensors. 2016;16(4):585. Doi: 10.3390/s16040585.

Deloire A, Carbonneau A, Wang Z, Ojeda H. Vine and water: a short review. OENO One. 2004;38(1):1-13. Doi: 10.20870/oeno-one.2004.38.1.932.

Deloire A, Pellegrino A, Ristic R. Spatial distribution of berry fresh mass, seed number and sugar concentration on grapevine clusters of Shiraz. Wine & Viticulture Journal. 2019;34:42-7.

Docampo R, Silva A. Suelos y su manejo. In: Grompone MA, Villamil J, editors. Aceites de oliva: de la planta al consumidor. Vol. 1. Montevideo: Hemisferio Sur; 2013. pp. 91-122.

Dry PR, Loveys BR, McCarthy MG, Stoll M. Strategic irrigation management in Australian vineyards. OENO One. 2001;35(3):129-39. Doi: 10.20870/oeno-one.2001.35.3.1699.

Easlon HM, Bloom AJ. Easy Leaf Area: automated digital image analysis for rapid and accurate measurement of leaf area. Appl Plant Sci. 2014;2(7):apps.1400033. Doi: 10.3732/apps.1400033.

Esteban MA, Villanueva MJ, Lissarrague JR. Effect of irrigation on changes in the anthocyanin composition of the skin of cv Tempranillo (Vitis vinifera L) grape berries during ripening. J Sci Food Agric. 2001;81(4):409-20. Doi: 10.1002/1097-0010(200103)81:4<409::AID-JSFA830>3.0.CO;2-H.

Etchebarne F, Aveni P, Escudier JL, Ojeda H. Reuse of treated wastewater in viticulture: Can it be an alternative source of nutrient-rich water? BIO Web Conf. 2019:12. Doi: 10.1051/bioconf/20191201009.

FAO. Guidelines for soil description [Internet]. 4th ed. Rome: FAO; 2006 [cited 2023 Sep 5]. 97p. Available from:

FAO. The state of food and agriculture 2020: overcoming water challenges in agriculture. Rome: FAO; 2020. 178p. Doi: 10.4060/cb1447en.

Fernández CJ. Estimaciones de la densidad aparente y retención de agua disponible en el suelo. In: 2a Reunión Técnica Facultad de Agronomía; 27 - 29 noviembre 1979, Montevideo. Montevideo: Universidad de la República; 1979. pp. S2.

Ferrer M, Echeverría G, Pereyra G, Gonzalez-Neves G, Pan D, Mirás-Avalos JM. Mapping vineyard vigor using airborne remote sensing: relations with yield, berry composition and sanitary status under humid climate conditions. Precis Agric. 2020;21(1):178-97. Doi: 10.1007/s11119-019-09663-9.

Gambetta JM, Holzapfel BP, Stoll M, Friedel M. Sunburn in grapes: a review. Front Plant Sci. 2021;11:604691. Doi: 10.3389/fpls.2020.604691.

Garcia-Tejera O, Bonada M, Petrie PR, Nieto H, Bellvert J, Sadras VO. Viticulture adaptation to global warming: modelling gas exchange, water status and leaf temperature to probe for practices manipulating water supply, canopy reflectance and radiation load. Agric For Meteorol. 2023;331:109351. Doi: 10.1016/j.agrformet.2023.109351.

Gaudin R, Gary C. Model-based evaluation of irrigation needs in Mediterranean vineyards. Irrig Sci. 2012;30:449-59. Doi: 10.1007/s00271-012-0349-x.

Glories Y, Agustin M. Maturité phénolique du raisin, conséquences technologiques: application aux millésimes 1991 et 1992. Compte Rendu Colloque Journée Techniques. 1993;56-61.

González-Neves G, Charamelo D, Balado J, Barreiro L, Bochicchio R, Gatto G, Gil G, Tessore A, Carbonneau A, Moutounet M. Phenolic potential of Tannat, Cabernet-Sauvignon and Merlot grapes and their correspondence with wine composition. Anal Chim Acta. 2004;513:191-6. Doi: 10.1016/j.aca.2003.11.042.

Grace WJ, Sadras VO, Hayman PT. Modelling heatwaves in viticultural regions of southeastern Australia. Aust Meteorol Oceanogr J. 2009;58(4):249.

Guilpart N, Metay A, Gary C. Grapevine bud fertility and number of berries per bunch are determined by water and nitrogen stress around flowering in the previous year. Eur J Agron. 2014;54:9-20. Doi: 10.1071/FP14062.

INAVI. Estadísticas de Viñedos 2022: datos nacionales [Internet]. Canelones: INAVI; 2023 [cited 2023 Sep 5]. 66p. Available from:

Intrigliolo DS, Castel JR. Vine and soil-based measures of water status in a Tempranillo vineyard. Vitis. 2006;45(4):157-63.

IPCC. Summary for Policymakers. In: Climate Change 2007: the physical science basis [Internet]. Cambridge: Cambridge University Press; 2007 [cited 2023 Sep 5]. 18p. Available from:

IPCC. Summary for Policymakers. In: Global Warming of 1.5°C: An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Internet]. Cambridge: Cambridge University Press; 2008 [cited 2023 Sep 5]. 24p. Available from:

Koundouras S, Hatzidimitriou E, Karamolegkou M, Dimopoulou E, Kallithraka S, Tsialtas JT, Zioziou E, Nikolaou N, Kotseridis Y. Irrigation and rootstock effects on the phenolic concentration and aroma potential of Vitis vinifera L. cv. cabernet sauvignon grapes. J Agric Food Chem. 2009;57(17):7805-13. Doi: 10.1021/jf901063a.

Lamy C. Impact du changement climatique sur la fréquence et l'intensité des sécheresses en Bretagne [doctoral’s thesis]. Rennes (FR): Université Rennes 2; 2013. 274p.

Lu Z, Neumann PM. Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot. 1998;49(329):1945-52.

Matthews MA, Ishii R, Anderson MM, O'Mahony M. Dependence of wine sensory attributes on vine water status. J Sci Food Agric. 1990;51(3):321-35. Doi: 10.1002/jsfa.2740510305.

McClymont L, Goodwin I, Mazza M, Baker N, Lanyon DM, Zerihun A, Downey MO. Effect of site-specific irrigation management on grapevine yield and fruit quality attributes. Irrig Sci. 2012;30:461-70. Doi: 10.1007/s00271-012-0376-7.

Metay A, Magnier J, Guilpart N, Christophe A. Nitrogen supply controls vegetative growth, biomass and nitrogen allocation for grapevine (cv. Shiraz) grown in pots. Funct Plant Biol. 2014;42(1):105-14. Doi: 10.1071/FP14062.

Mirás-Avalos JM, Trigo-Córdoba E, Bouzas-Cid Y, Orriols-Fernández I. Irrigation effects on the performance of grapevine (Vitis vinifera L.) cv. ‘Albariño’ under the humid climate of Galicia. OENO One. 2016;50(4). Doi: 10.20870/oeno-one.2016.50.4.63.

Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K. Loss of anthocyanins in red-wine grape under high temperature. J Exp Bot. 2007;58(8):1935-45. Doi: 10.1093/jxb/erm055.

Myers BJ. Water stress integral: a link between short-term stress and long-term growth. Tree physiol. 1988;4(4):315-23. Doi: 10.1093/treephys/4.4.315.

Nairn JR, Fawcett RG. Defining heatwaves: heatwave defined as a heat-impact event servicing all community and business sectors in Australia. Kent Town: Centre for Australian Weather and Climate Research; 2013. 84p.

OIV. Compendium of International Methods of Analysis of Wines and Musts Analysis [Internet]. Vol. 1. Paris: OIV; 2021 [cited 2023 Sep 5]. 673p. Available from:

Ojeda H. Riego cualitativo de precisión en la vid. Revista Enología. 2007;1:14-7.

Ojeda H, Andary C, Kraeva E, Carbonneau A, Deloire A. Influence of pre- and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. Am J Enol Vitic. 2002;53:261-7.

Oldoni H, Costa BRS, Bognola IA, Souza CR, Bassoi LH. Homogeneous zones of vegetation index for characterizing variability and site-specific management in vineyards. Sci agric (Piracicaba, Braz.). 2020;78(4). Doi: 10.1590/1678-992X-2019-0243.

Pagay V, Collins C. Effects of timing and intensity of elevated temperatures on reproductive development of field-grown Shiraz grapevines. OENO One. 2017;51(4). Doi: 10.20870/oeno-one.2017.51.4.1066.

Pagay V, Furlan TS, Kidman CM, Nagahatenna D. Long-term drought adaptation of unirrigated grapevines (Vitis vinifera L.). Theor Exp Plant Physiol. 2022;34(2):215-25. Doi: 10.1007/s40626-022-00243-3.

Pedrero F, Maestre-Valero JF, Mounzer O, Alarcón JJ, Nicolás E. Physiological and agronomic mandarin trees performance under saline reclaimed water combined with regulated deficit irrigation. Agric Water Manag. 2014;146:228-37.

Pereyra G, Ferrer M, Pellegrino A, Gaudin R. Montmorillonite content is an influential soil parameter of grapevine development and yield in South Uruguay. Agrocienc Urug. 2022;26(2):e1124. Doi: 10.31285/AGRO.26.1124.

Pereyra G, Pellegrino A, Gaudin R, Ferrer M. Evaluation of site-specific management to optimise Vitis vinifera L.(cv. Tannat) production in a vineyard with high heterogeneity. OENO One. 2022;56(3):397-412. Doi: 10.20870/oeno-one.2022.56.3.5485.

Plan Nacional de Adaptación a la variabilidad y el cambio climático para el sector agrícula [Internet]. Montevideo: MGAP; 2019 [cited 2023 Sep 5]. 125p. Available from:

Priori S, Pellegrini S, Perria R, Puccioni S, Storchi P, Valboa G, Costantini EAC. Scale effect of terroir under three contrasting vintages in the Chianti Classico area (Tuscany, Italy). Geoderma. 2019;334:99-112. Doi: 10.1016/j.geoderma.2018.07.048.

Reynolds AG, Senchuk IV, van der Reest C, de Savigny C. Use of GPS and GIS for elucidation of the basis for terroir: spatial variation in an Ontario Riesling vineyard. Am J Enol Vitic. 2007;58:145-62. Doi: 10.5344/ajev.2007.58.2.145.

Roby G, Matthews MA. Relative proportions of seed, skin and flesh, in ripe berries from Cabernet Sauvignon grapevines grown in a vineyard either well irrigated or under water deficit. Aust J Grape Wine Res. 2004;10:74-82. Doi: 10.1111/j.1755-0238.2004.tb00009.x.

Romero P, Gil-Muñoz R, del Amor FM, Valdes E, Fernández JI, Martinez-Cutillas A. Regulated deficit irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agric Water Manag. 2013;121:85-101. Doi: 10.1016/j.agwat.2013.01.007.

Sadras VO, Moran MA. Elevated temperature decouples anthocyanins and sugars in berries of Shiraz and Cabernet Franc. Aust J Grape Wine Res. 2012;18(2):115-22.

Savoi S, Wong DC, Arapitsas P, Miculan M, Bucchetti B, Peterlunger E, Fait A, Mattivi F, Castellarin SD. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 2016;16:67. Doi: 10.1186/s12870-016-0760-1.

Silva A, Docampo R, Camejo C, Barboza C. Inventario de suelos bajo viña: principales características edafológicas de los viñedos uruguayos. Montevideo: INIA; 2018. 164p.

Silva A, Ponce de León J, García F, Durán A. Aspectos metodológicos en la determinación de la capacidad de retener agua de los suelos del Uruguay. Boletín de Investigación. 1988;(10):20p.

Singh U, Praharaj CS, Gurjar DS, Kumar R. Precision irrigation management: concepts and applications for higher use efficiencyin field crops. In: Scaling Water Productivity and Resource Conservation in Upland Field Crops Ensuring More Crop per Drop. Kampur: ICAR; 2019. p. 181-90.

Soil Survey Staff. Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. 2nd ed. Washington: USDA; 1999. 871p.

Tardaguila J, Baluja J, Arpon L, Balda J, Oliveira M. Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precis Agric. 2011;12:762-73. Doi: 10.1007/s11119-011-9219-4.

Taylor JA, Acevedo-Opazo C, Ojeda H, Tisseyre B. Identification and significance of sources of spatial variation in grapevine water status. Aust J Grape Wine Res. 2010;16:218-26. Doi: 10.1111/j.1755-0238.2009.00066.x.

Tiscornia G, Cal A, Gimenez A. Análisis y caracterización de la variabilidad climática en algunas regiones de Uruguay. RIA. 2016;42(1):66-71.

Tomaz A, Coleto Martinez J, Pacheco CA. Effects of cover crops and irrigation on ‘Tempranillo’ grapevine and berry physiology: an experiment under the Mediterranean conditions of Southern Portugal. Oeno One. 2021;55(3):191-208. Doi: 10.20870/oeno-one.2021.55.3.4629.

Trigo-Córdoba E, Bouzas-Cid Y, Orriols-Fernández I, Mirás-Avalos JM. Effects of deficit irrigation on the performance of grapevine (Vitis vinifera L.) cv.‘Godello’and ‘Treixadura’in Ribeiro, NW Spain. Agric Water Manag. 2015;161:20-30. Doi: 10.1016/j.agwat.2015.07.011.

van Leeuwen C, Friant P, Chone X, Tregoat O, Koundouras S, Dubourdieu D. Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic. 2004;55:207-17. Doi: 10.5344/ajev.2004.55.3.207.

Vories E, O’Shaughnessy S, Sudduth K, Evett S, Andrade M, Drummond S. Comparison of precision and conventional irrigation management of cotton and impact of soil texture. Precis Agric. 2021;22:414-31. Doi: 10.1007/s11119- 020-09741-3.

Vrignon-Brenas S, Metay A, Leporatti R, Gharibi S, Fraga A, Dauzat M, Rolland G, Pellegrino A. Gradual responses of grapevine yield components and carbon status to nitrogen supply. Oeno One. 2019;53:289-306. Doi: 10.20870/oeno-one.2019.53.2.2431.

Wan Y, Schwaninger H, Li D, Simon CJ, Wang Y, He P. The ecogeographic distribution of wild grapegermplasm in China. Vitis. 2008;47:77-80.

Webb L, Whiting J, Watt A, Hill T, Wigg F, Dunn G, Barlow EWR. Managing grapevines through severe heat: a survey of growers after the 2009 summer heatwave in south-eastern Australia. J Wine Res. 2010;21(2-3):147-65. Doi: 10.1080/09571264.2010.530106.

Williams LE. Determination of evapotranspiration and crop coefficients for a Chardonnay vineyard located in a cool climate. Am J Enol Vitic. 2014;65:159-69. Doi: 10.5344/ajev.2014.12104.

Williams LE, Ayars JE. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric For Meteorol. 2005;132:201-11. Doi: 10.1016/J.AGRFORMET.2005.07.010.

Williams LE, Baeza P. Relationships among ambient temperature and vapor pressure deficit and leaf and stem water potentials of fully irrigated, field-grown grapevines. Am J Enol Vitic. 2007;58:173-81. Doi: 10.5344/ajev.2007.58.2.173.

Williams LE, Dokoozlian NK, Wample R. Grape. In: Schaffer B, Andersen PC, editors. Handbook of Environmental Physiology of Fruit Crops. Vol. 1, Temperate Crops. Boca Raton: CRC Press; 1994. pp. 85-133.

Williams LE, Matthews MA. Grapevine. In: Stewart BA, Nielson NR, editors. Irrigation of agricultural crops. Madison: ASA; 2009. pp. 1019-55.




How to Cite

Pereyra G, Ferrer M. New challenges for Uruguayan viticulture: water management in the context of a changing climate. Agrocienc Urug [Internet]. 2024 Feb. 6 [cited 2024 Mar. 4];27(NE1):e1195. Available from:



Irrigation and water management
QR Code


Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)