Acumulación de sodio vs. lavado de nitrógeno en suelos bajo invernadero en el sur de Uruguay con diferentes regímenes de fertirriego

Autores/as

  • Cecilia Berrueta Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental Salto Grande, Sistema Vegetal Intensivo, Salto, Uruguay https://orcid.org/0000-0001-5700-2857
  • Claudio García Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental Wilson Ferreira Aldunate, Sistema Vegetal Intensivo, Canelones, Uruguay https://orcid.org/0000-0002-0170-4128
  • Rafael Grasso Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental Salto Grande, Sistema Vegetal Intensivo, Salto, Uruguay https://orcid.org/0000-0002-1005-4577

DOI:

https://doi.org/10.31285/AGRO.27.1189

Palabras clave:

riego, percolación profunda, eficiencia en el uso de nutrientes, salinidad de suelo, Solanum lycopersicum

Resumen

En condiciones de invernadero, la salinidad del suelo y la lixiviación de N dependen del volumen de riego, la calidad del agua y el manejo de los fertilizantes o las enmiendas que se aplican. El objetivo de este estudio fue cuantificar y analizar el proceso de acumulación y/o lixiviación de NO3- y Na+ en la producción de tomate bajo invernadero en la región sur de Uruguay en suelos de textura fina bajo diferentes regímenes de fertirrigación. El estudio se realizó en cuatro cultivos de tomate durante las temporadas 2019/20/21. Se aplicaron tres regímenes de fertirrigación. El volumen de riego fue el mismo para todos los tratamientos. El drenaje se determinó utilizando lisímetros de drenaje libre. La concentración en la solución del suelo y la lixiviación de NO3- y Na+ se midieron monitoreando la solución del suelo y la solución de drenaje. Se determinó el rendimiento, la absorción de N y la eficiencia de uso de N para cada tratamiento. El drenaje total del suelo fue el principal factor explicativo de la lixiviación de N y Na+. La lixiviación de N estuvo entre 0 y 23,4 kg N ha-1 por cultivo de tomate con drenaje total entre 0 y 46,2 % del riego. El drenaje necesario para evitar la acumulación de Na+ fue del 13 % del riego total. Este drenaje produjo una lixiviación de 8,4 kg de N por ha-1 durante el período de cultivo del tomate. La optimización del riego es el factor clave de la paradoja de la lixiviación salinidad-nitrógeno. La cantidad y el momento del riego deben intentar: (1) evitar el riego excesivo cuando la concentración de NO3- en la solución del suelo es alta y (2) aplicar riego de lavado cuando la concentración de Na+ en la solución del suelo es alta. El monitoreo de la solución del suelo, con sondas de succión y sistemas de análisis químico rápido, podría ser una herramienta útil para identificar períodos de alto riesgo de lixiviación de N y el momento adecuado para el riego de lavado de sales.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias bibliográficas

Alliaume F, Rossing WAH, García M, Giller K, Dogliotti S. Changes in soil quality and plant available water capacity following systems re-design on commercial vegetable farms.Eur JAgron.2012;46:10-9. Doi: 10.1016/j.eja.2012.11.005.

Ayers RS, Westcot DW. Water quality for agriculture. Rome: FAO; 1989. 174p.

Berrueta C, Borges A, Giménez G, Dogliotti S. On-farm diagnosis for greenhouse tomato in South Uruguay: explaining yield variability and ranking of determining factors. Eur J Agron. 2019;110:125932.Doi: 10.1016/j.eja.2019.125932.

Berrueta C, Heuvelink E, Giménez G, Dogliotti S. Estimation of tomato yield gaps for greenhouse in Uruguay. Sci Hortic. 2020;265:109250. Doi: 10.1016/ j.scienta.2020.109250.

Botía P, Navarro JM, Cerdá A, Martínez V. Yield and fruit quality of two melon cultivars irrigated with saline water at different stages of development. Eur J Agron. 2005;23(3):243-53. Doi: 10.1016/j.eja.2004.11.003.

Briassoulis D, Waaijenberg D, Gratraud J, Von Eslner B. Mechanical properties of covering materials for greenhouses: part 1, general overview. J Agric Eng Res. 1997;67:81-96.Doi:10.1006/jaer.1997.0154.

Cameron KC, Di HJ, Moir JL. Nitrogen losses from the soil/plant system: a review. Ann Appl Biol. 2013;162:145-73. Doi: 10.1111/aab.12014.

Castaño JP, Giménez A, Ceroni M, Furest J, Aunchayna R. Caracterización agroclimática del Uruguay 1980-2009. Montevideo: INIA; 2011. 34p.

Ciampitti I, García F. Requerimientos nutricionales:absorción y extracción de macronutrientes y nutrientes secundarios. Archivo Agronómico. 2007;(12):1-4

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. InfoStat [Internet]. Version 2008. Córdoba: Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias; 2008 [cited 2023Oct04]. Available from: https://bit.ly/3dDvIyu

Enoch HZ, Enoch Y. The history and geography of the greenhouse. In: Stanhil G, Enoch HZ, editors. Greenhouse ecosystems.Amsterdam: Elsevier; 1999. pp. 1-15.

FAO Guidelines for Soil Description [Internet]. 4th ed. Rome: FAO; 2006 [cited 2023 Oct 04]. 97p. Available from: http://www.fao.org/docrep/019/a0541e/a0541e.pdf

Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevenson D, Amann M, Voss M. The global nitrogen cycle in the twenty-first century. Philos Trans R Soc Lond B Biol Sci. 2013;368(1621):20130164. Doi: 10.1098/rstb.2013.0164.

Gallardo M, Fernández MD, Giménez C, Padilla FM, Thompson RB. Revised VegSyst model to calculate dry matter production, critical N uptake and ETc of several vegetable species grown in Mediterranean greenhouses. Agric Syst. 2016;146:30-43. Doi: 10.1016/j.agsy.2016.03.014.

Gallardo M, Thompson RB, Fernández MD, López-Toral J. Effect of applied N concentration in a fertigated vegetable crop on soil solution nitrate and nitrate leaching loss. Acta Hortic. 2006;(700):221-4.

Gallardo M, Thompson RB, Giménez C, Padilla FM, Stöckle CO. Prototype decision support system based on the VegSyst simulation model to calculate crop N and water requirements for tomato under plastic cover. Irrig Sci. 2014;32:237-53. Doi: 10.1007/s00271-014-0427-3.

Gangwar P, Singh R, Trivedi M, Tiwari RK. Sodic soil: management and reclamation strategies.In: Environmental concerns and sustainable development. Vol. 2, Biodiversity, Soil and Waste Management. Singapore: Springer; 2020. pp. 175-90.

Gheysari M, Mirlatifi SM, Homaee M, Asadi ME, Hoogenboom G. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric Water Manage. 2009;96:946-54.

Gianquinto G, Muñoz P, Pardossi A, Ramazzotti S, Savvas D. Soil fertility and plant nutrition. In: Good Agricultural Practices for greenhouse vegetable crops:principles for Mediterranean climate areas. Rome: FAO; 2013. pp. 205-69.

Grasso R, Berrueta C, Giménez G, Alzugaray J. ¿Cuándo y cuánto regar? Manejo del riego con tensiómetros en cultivos hortícolas protegidos. Revista INIA [Internet]. 2022 [cited 2023 Apr 21]; (69):78-81. Available from: https://bit.ly/45jBBKD

Guimera J, Marfa O, Candela L, Serrano L. Nitrate leaching and strawberry production under drip irrigation management. Agric Ecosyst Environ. 1995;56:121-35.

Hester RE, Harrison RM, Addiscott TM. Fertilizers and nitrate leaching. In: Hester RE, Harrison RM, editors. Agricultural chemicals and the environment. Cambridge: The Royal Society of Chemistry; 1996. pp. 1-26. Doi: 10.1039/9781847550088-00001.

Hochmuth GJ, Maynard D, Vavrina C, Hanlon E, Simonne E. Plant tissue analysis and interpretation for vegetable crops in Florida. Florida: EDIS; 2012. 10p.

Hong EM, Choi JY, Nam WH, Kang MS, Jang JR. Monitoring nutrient accumulation and leaching in plastic greenhouse cultivation. Agric Water Manage. 2014;146:11-23. Doi: 10.1016/j.agwat.2014.07.016.

Lemaire G, Gastal F. Nitrogen uptake and distribution in plant canopies. In: Lemaire G, editor. Diagnosis of the nitrogen status in crop. Heidelberg:Springer-Verlag; 1997. pp. 3-43.

Libutti A, Cammerino ARB, Monteleone M. Risk assessment of soil salinization due to tomato cultivation in Mediterranean climate conditions.Water. 2018;10(11):1503. Doi: 10.3390/w10111503.

Libutti A, Monteleone M. Soil vs. groundwater: the quality dilemma: managing nitrogen leaching and salinity control under irrigated agriculture in Mediterranean conditions. Agric Water Manage. 2017;186:40-50. Doi: 10.1016/j.agwat.2017.02.019.

Machado RMA, SerralheiroRP. Soil salinity: effect on vegetable crop growth: management practices to prevent and mitigate soil salinization. Horticulturae. 2017;3:30. Doi: 10.3390/horticulturae3020030.

Mahler RL, Colter A, Hirnyck R. Quality water for Idaho Nitrate and Groundwater. Idaho: Universityof Idaho College of Agricultural and Life Sciences; 2007. 872p.

Min J, Zhang H, Shi W. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agric Water Manage. 2012;111:53-9. Doi: 10.1016/j.agwat.2012.05.003.

Minhas PS, Ramos TB, Ben-Gal A, Pereira LS. Coping with salinity in irrigated agriculture: crop evapotranspiration and water management issues. Agric Water Manage. 2020;227:105832. Doi: 10.1016/j.agwat.2019.105832.

Moreno F, Cabrera F, Murillo JM, Fernández JE, Fernández-Boy E, Cayuela JA. Nitrate leaching under irrigated agriculture. In: Pereira LS, Feddes RA, Gilley JR, Lesaffre B, editors. Sustainability of irrigated agriculture. Dordrecht: Springer; 1996. pp. 407-15. Doi: 10.1007/978-94-015-8700-6_24.

Padilla FM, Gallardo M, Manzano-Agugliaro F. Global trends in nitrate leaching research in the 1960–2017 period. Sci Total Environ. 2018;643:400-13.Doi: 10.1016/j.scitotenv.2018.06.215.

Pardossi A, Tognoni F, Incrocci L. Mediterranean greenhouse technology. ChronHortic. 2004;44(2):28-34.

Perdomo CH, Casanova ON, Ciganda VS. Contaminación de aguas subterráneas con nitratos y coliformes en el litoral sudoeste del Uruguay. Agrociencia. 2001;5(1):10-22.

Peterson CA, Soares T, Torbert E. Drip irrigationeffect on soil function, root systems and productivity in organic tomato and corn.In: Proceedings of the Organic Agriculture Research Symposium; 2016 Jan 20; Pacific Grove, California. 7p. Available from: https://bit.ly/45c9w7S

Pratt PF. Nitrogen use and nitrate leaching in irrigated agriculture. In: Hauck RD, editor. Nitrogen in crop production. Madison: ASA; 1984. pp. 319-33. Doi: 10.2134/1990.nitrogenincropproduction.c21.

Ramos C, Agut A, Lidon AL. Nitrate leaching in important horticultural crops of the Valencian Community region (Spain). Environ Pollut. 2002;118:215-23.

Ramos C. Effect of agricultural practices on the nitrogen losses to the environment. Fert Res. 1996;43:183-9.

Richards LA. Diagnosis and improvement of Saline and Alkali Soils U.S.Salinity Laboratory. Washington: USDA; 1954. 160p.

Sánchez-Pérez JM, Antigüedad I, Arrate I, García-Linares C, Morell I. The influence of nitrogen leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country. Sci Total Environ. 2003;317:173-87.

Silvera D, Barbazán M. Soil characterization of horticultural greenhouses in northern Uruguay. Agrocienc Urug. 2020;24(2):51. Doi: 10.31285/agro.24.51.

Tamagno S, Eagle AJ, McLellan EL, van Kessel C, Linquist BA, Ladha JK, Lundi ME, Pittelkow CM. Predicting nitrate leaching loss in temperate rainfed cereal crops: relative importance of management and environmental drivers.EnvironResLetters. 2022;17(6):064043.Doi: 10.1088/1748-9326/ac70ee.

Thompson RB, Martinez-Gaitán C, Gallardo M, Gimenez C, Fernández MD.Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric Water Manage. 2007;89:261-74.

Thompson RB, Padilla FM, Peña-Fleitas MT, Gallardo M. Reducing nitrate leaching losses from vegetable production in Mediterranean greenhouses. Acta Hortic. 2020(1268):105-18. Doi: 10.17660/ActaHortic.2020.1268.14.

Thompson RB, Tremblay N, Fink M, Gallardo M, Padilla FM. Tools and strategies for sustainable nitrogen fertilisation of vegetable crops. In: Tei F, Nicola S, Benincasa P, editors. Advances in research on fertilization management in vegetable crops. Heidelberg: Springer; 2017. pp. 11-63.

Vargas JM, Palacios MI, Aguilar J, Camacho JH, Ocampo JG, Medina SE. Efficiency of small enterprises of protected agriculture in the adoption of innovations in Mexico. Estud gerenc. 2018;34(146):52­62. Doi:10.18046/j.estger.2018.146.2811.

Vázquez N, Pardo A, Suso ML, Quemada M. A methodology for measuring drainage and nitrate leaching in unevenly irrigated vegetable crops. Plant Soil. 2005;269:297-308.

Vázquez N, Pardo A, Suso ML, Quemada M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric Ecosyst Environ. 2006;112:313-23.

Yuan XM, Tong YA, Yang XY, Li XL, Zhang FS. Effect of organic manure on soil nitrate nitrogen accumulation. Soil Environ Sci. 2000;9:197-200.

Zhang Y, Jiang Y, Liang W. Accumulation of soil soluble salt in vegetable greenhouses under heavy application of fertilizers. Agric J. 2006;1(3):123-7.

Zhu AN, Zhang JB, Zhao BZ, Cheng ZH, Li LP. Water balance and nitrate leaching losses under intensive crop production with Ochric Aquic Cambosols in North China Plain. Environ Int. 2005;31:904-12. Doi: 10.1016/j.envint.2005.05.038.

Descargas

Publicado

2024-02-06

Cómo citar

1.
Berrueta C, García C, Grasso R. Acumulación de sodio vs. lavado de nitrógeno en suelos bajo invernadero en el sur de Uruguay con diferentes regímenes de fertirriego. Agrocienc Urug [Internet]. 6 de febrero de 2024 [citado 17 de mayo de 2024];27(NE1):e1189. Disponible en: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1189

Número

Sección

Irrigation and water management
QR Code

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas

Artículos más leídos del mismo autor/a