Modelagem baseada em agentes aplicada à avaliação de nitrogênio e fósforo em agroecossistemas
Um estudo de caso de uma fazenda leiteira uruguaia
DOI:
https://doi.org/10.31285/AGRO.29.1141Palavras-chave:
ABM, fazenda leiteira, modelagem ecológica, balanço de nutrientes, eficiência de nutrientesResumo
A produção de laticínios no Uruguai é essencial e está sob escrutínio devido aos impactos ambientais que pode causar. Os impactos resultam principalmente de práticas de gestão ineficientes, que levam ao uso excessivo de nutrientes, cujo excedente escoa para o meio ambiente, afetando o solo, as águas subterrâneas e os rios. Neste contexto, este artigo explica pesquisas que geraram novos conhecimentos para o setor lácteo do Uruguai alcançar uma produção mais sustentável, ao compreender quais práticas agrícolas maximizam a eficiência dos nutrientes e, ao mesmo tempo, reduzem os impactos ambientais. A pesquisa utilizou uma abordagem multimetodológica no caso de uma típica fazenda leiteira no Uruguai, aplicando o Método de Orçamento de Nutrientes e desenvolvendo um Modelo Baseado em Agentes (ABM) denominado Gestão de Nitrogênio e Fósforo (NPM). O balanço de nutrientes é um método valioso e simples para analisar dados e avaliar entradas e saídas de nutrientes, embora tenha limitações visuais e analíticas, que podem ser complementadas com modelagem adequada baseada em agentes, que permite analisar os agentes do modelo no tempo e no espaço, capturando a heterogeneidade do agroecossistema. Os resultados da pesquisa mostram que a utilização de práticas corretas melhora a eficiência nutricional, reduzindo a dependência de insumos externos. As principais conclusões indicam que a fixação biológica de azoto, as dietas pastoris, a taxa de lotação e a acumulação de fósforo no solo são variáveis-chave que afetam a eficiência e os impactos ambientais.
Downloads
Referências
Aarons SR, Gourley CJP, Powell JM. Nutrient intake, excretion and use efficiency of grazing lactating herds on commercial dairy farms. Animals (Basel). 2020;10(3):390. Doi: 10.3390/ani10030390. DOI: https://doi.org/10.3390/ani10030390
ArcMap [software]. Version 10.7.1. Redlands: Esri; 2019 [cited 2024 Dec 27]. Available from: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview
Arriaga H, Pinto M, Calsamiglia S, Merino P. Nutritional and management strategies on nitrogen and phosphorus use efficiency of lactating dairy cattle on commercial farms: an environmental perspective. J Dairy Sci. 2009;92(1):204-15. Doi: 10.3168/jds.2008-1304. DOI: https://doi.org/10.3168/jds.2008-1304
Aubriot L, Delbene L, Haakonsson S, Somma A, Hirsch F, Bonilla S. Evolution of eutrophication in Santa Lucía River: influence of land use intensification and perspectives. Innotec. 2017;14:7-16. Doi: 10.26461/14.04. DOI: https://doi.org/10.26461/14.04
Carbó LI. Balances de nutrientes como herramienta para estimar el potencial para el reciclado de los efluentes de tambo en recursos forrajeros [specialization certificate on Internet]. Buenos Aires (AR): Universidad de Buenos Aires, Facultad de Agronomía; 2012 [cited 2024 Dec 27]. 54p. Available from: http://ri.agro.uba.ar/greenstone3/library/collection/tesis/document/2011carbolornaileana
Charlón V, Carbó L, Herrero MA, Cuatrin A. Balance de nitrógeno en tambos y su relación con indicadores de estructura y de manejo. Rev Arg Prod Anim. 2014;34 Suppl. 1:266.
Cherry KA, Shepherd M, Withers PJ, Mooney SJ. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods. Sci Total Environ. 2008;406(1-2):1-23. Doi: 10.1016/j.scitotenv.2008.07.015. DOI: https://doi.org/10.1016/j.scitotenv.2008.07.015
Circularidad de nutrientes [Internet]. Uruguay: Proyecto BIOVALOR; 2014-2020 [cited 2024 Dec 27]. Available from: https://biovalor.gub.uy/circularidad-nutrientes/
Darré E, Llanos E, Astigarraga L, Cadenazzi M, Picasso V. Do pasture-based mixed dairy systems with higher milk production have lower environmental impacts?: a Uruguayan case study. New Zeal J Agr Res. 2021;64(3):444-62. Doi: 10.1080/00288233.2020.1750433. DOI: https://doi.org/10.1080/00288233.2020.1750433
Davidson EA, Suddick EC, Rice CW, Prokopy LS. More food, low pollution (mo fo lo Po): a grand challenge for the 21st century. J Environ Qual. 2015;44(2):305-11. Doi: 10.2134/jeq2015.02.0078. DOI: https://doi.org/10.2134/jeq2015.02.0078
De Lucca A. Pérdidas de fósforo por escorrentía desde el suelo, fertilizante y estiércol: cuantificación y distribución en el tiempo [master’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2020. 54p.
Dong H, Mangino J, McAllister TA, Hatfield JR, Johnson DE, Lassey KR, de Lima MA, Romanovskaya A. Emissions from livestock and manure management. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K, editors. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 4, Agriculture, forestry and other land use. Hayama: IGES; 2006. 87p.
Erosion 6 [software]. Montevideo: Universidad de la República; [cited 2024 Dec 27]. Available from: https://portal.fagro.edu.uy/servicios/erosion-6/
Eurostat. Analysis of methodologies for calculating greenhouse gas and ammonia emissions and nutrient balances. Luxembourg: European Union; 2011. 59p. Doi: 10.2785/21209.
Fernández-Marcos ML. Contaminación por fósforo procedente de la fertilización orgánica de suelos agrícolas. In: López Mosquera ME, Sáinz Osés MJ, editors. Gestión de residuos orgánicos de uso agrícola [Internet]. Santiago de Compostela: Universidade de Santiago de Compostela; 2011 [cited 2024 Dec 27]. p. 2535. Available from: https://www.researchgate.net/publication/230688083_Contaminacion_por_fosforo_procedente_de_la_fertilizacion_organica_de_suelos_agricolas
Garcia L, Dubeux JCB, Sollenberger LE, Vendramini JMB, DiLorenzo N, Santos ERS, Jaramillo DM, Ruiz MM. Nutrient excretion from cattle grazing nitrogen-fertilized grass or grass-legume pastures. Agron J. 2021;113(4):3110-23. Doi: 10.1002/agj2.20675. DOI: https://doi.org/10.1002/agj2.20675
Gliessman S. Agroecology and agroecosystems. In: Agroecosystems analysis. Madison: American Society of Agronomy; 2004. p. 19-30. DOI: https://doi.org/10.2134/agronmonogr43.c2
Google Earth [Software]. Version 9.0. Mountain View: Google LLC; 2021.
Gourley CJP, Aarons SR, Awty IM, Gibson DM, Hannah MC, Smith AP, Peverill KI. Farm-scale nitrogen, phosphorus, potassium and sulfur balances and use efficiencies on Australian dairy farms. Anim Prod Sci. 2012;52(10):929-44. Doi: 10.1071/AN11337. DOI: https://doi.org/10.1071/AN11337
Gourley CJP, Powell JM, Dougherty WJ, Weaver DM. Nutrient budgeting as an approach to improving nutrient management on Australian dairy farms. Aust J Exp Agric. 2007;47(9):1064-74. Doi: 10.1071/EA07017. DOI: https://doi.org/10.1071/EA07017
Grimm V, Railsback SF, Vincenot CE, Berger U, Gallagher C, DeAngelis DL, Edmonds B, Ge J, Giske J, Groeneveld J, Johnston ASA, Milles A, Nabe-Nielsen J, Polhill JG, Radchuk V, Rohwäder M-S, Stillman RA, Thiele JC, Ayllón D. The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J Artif Soc Soc Simul. 2020;23(2):7. Doi: 10.18564/jasss.4259. DOI: https://doi.org/10.18564/jasss.4259
INALE. Modelo lechero 10 y Modelo lechero 12: ejercicio 2019-2020: resultados preliminares. Montevideo: INALE; 2020. 2p.
INALE. Uruguay Lechero [Internet]. [cited 2024 Dec 27]. Available from: https://www.inale.org/uruguay-lechero/
International Plant Nutrition Institute. Nitrogen. Nutri-Facts [Internet]. [cited 2025 Mar 20] (1):2p. Available from: https://nutrien-ekonomics.com/wp-content/uploads/2025/01/IPNI-Nutrifacts_Nitrogen.pdf
IPCC; FAO; IFAD. Emerging activities to combat climate change – use of FAO data and IPCC GHG Inventory Guidelines for agriculture and Land Use: Report of Joint FAO-IPCC-IFAD Expert Meeting on Emerging activities to combat climate change – use of FAO data and IPCC GHG Inventory Guidelines for Agriculture and Land Use [Internet]. Rome: IPCC; 2015 [cited 2024 Dec 27]. 40p. Available from: https://www.ipcc-nggip.iges.or.jp/public/mtdocs/pdfiles/1411_FAO-IPCC-IFAD_Rome_AFOLU.pdf
Kleinman PJ, Sharpley AN, Withers PJ, Bergström L, Johnson LT, Doody DG. Implementing agricultural phosphorus science and management to combat eutrophication. Ambio. 2015;44 Suppl 2:S297-310. Doi: 10.1007/s13280-015-0631-2. DOI: https://doi.org/10.1007/s13280-015-0631-2
Ledgard S, Schils R, Eriksen J, Luo J. Environmental impacts of grazed clover/grass pastures. Ir J Agric Food Res. 2009;48(2):209-26.
Lemaire G, Gastal F, Franzluebbers A, Chabbi A. Grassland-cropping rotations: an avenue for agricultural diversification to reconcile high production with environmental quality. Environ Manage. 2015;56(5):1065-77. Doi: 10.1007/s00267-015-0561-6. DOI: https://doi.org/10.1007/s00267-015-0561-6
Lizarralde J. Relación entre la huella de carbono y las prácticas de manejo en predios lecheros del Uruguay [master’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2013. 59p.
Los treinta. Integrantes [Internet]. [cited 2024 Dec 27]. Available from: https://lostreinta.uy/#!/-integrantes/
McKnight L, Ibeagha-Awemu E. Modeling of livestock systems to enhance efficiency. Anim Front. 2019;9(2):3-5. Doi: 10.1093/af/vfz011. DOI: https://doi.org/10.1093/af/vfz011
Mieres JM. Guía para la alimentación de rumiantes. Montevideo: INIA; 2004. 81p.
Ministerio de Ambiente (UY). Inventario Nacional de Gases de Efecto Invernadero: serie temporal 1990-2017 [Internet]. Uruguay: MA; 2020 [cited 2024 Dec 27]. 18p. Available from: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/2021-04/Folleto%20INGEI%20Serie%201990-%202017.pdf
Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Regiones agropecuarias del Uruguay [Internet]. Montevideo: MGAP; 2015 [cited 2024 Dec 27]. 38p. Available from: http://www.mgap.gub.uy/dieaanterior/regiones/regiones2015.pdf
Ministerio de Vivienda y Ordenamiento Territorial (UY). Third national communication to the conference of the parties to the United Nations Framework Convention on Climate Change: executive summary. Montevideo: MVOT; 2010. 34p.
Morón A, Risso DF, editors. Nitrógeno en pasturas. Montevideo: INIA; 1994. 65p.
Mosier AR. Soil processes and global change. Biol Fertil Soils. 1998;27(3):221-9. Doi: 10.1007/s003740050424. DOI: https://doi.org/10.1007/s003740050424
Moss B. Water pollution by agriculture. Philos Trans R Soc Lond B Biol Sci. 2008;363(1491):659-66. Doi: 10.1098/rstb.2007.2176. DOI: https://doi.org/10.1098/rstb.2007.2176
NetLogo [Internet]. Evanston: Northwestern University; 2021 [cited 2024 Dec 27]. Available from: http://ccl.northwestern.edu/netlogo-ccl.shtml
NRC. Air emissions from animal feeding operations: current knowledge, future needs. Washington: National Academies Press, 2003. 263p.
NRC. Nutrient requirements of dairy cattle. 7th rev. ed. Washington: National Academies Press; 2001. 381p.
Otero A, Castro M. Variability of alfalfa (Medicago sativa L.) seasonal forage production in the southwest of Uruguay. Agrocienc Urug. 2019;23(1):e65. Doi: 10.31285/AGRO.23.1.9. DOI: https://doi.org/10.31285/AGRO.23.1.9
Paerl HW, Dennis RL, Whitall DR. Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries. 2002;25(4):677-93. DOI: https://doi.org/10.1007/BF02804899
Perdomo C, Irissari P, Ernst O. Nitrous oxide emissions from an Uruguayan argiudoll under different tillage and rotation treatments. Nutr Cycl Agroecosyst. 2009;84(2):119-28. Doi: 10.1007/s10705-008-9231-x. DOI: https://doi.org/10.1007/s10705-008-9231-x
Perdomo CH, Barreto P, Piñeiro V. Pérdida de fósforo desde suelos agrícolas hacia aguas superficiales: resultados preliminares para Uruguay y posibles medidas de manejo para mitigar riesgos. In: Buscando el camino para la intensificación sostenible para la agricultura. IV Simposio Nacional de Agricultura; 2015 28-29 octubre; Paysandú, Uruguay. Montevideo: Universidad de la República; 2015. p. 77-94.
Powell JM, Gourley CJP, Rotz CA, Weaver DM. Nitrogen use efficiency: a potential performance indicator and policy tool for dairy farms. Environ Sci Policy. 2010;13(3):217-28. Doi: 10.1016/j.envsci.2010.03.007. DOI: https://doi.org/10.1016/j.envsci.2010.03.007
Prado A, Corré W, Gallejones P, Pardo G, Pinto M, Hierro O, Oenema O. NUTGRANJA 2.0: a simple mass balance model to explore the effects of different management strategies on nitrogen and greenhouse gases losses and soil phosphorus changes in dairy farms. Mitig Adapt Strateg Glob Chang. 2016;21(7):1145-64. Doi: 10.1007/s11027-014-9598-8. DOI: https://doi.org/10.1007/s11027-014-9598-8
Railsback SF, Grimm V. Agent-based and individual-based modelling: a practical introduction. 2nd ed. Princeton: Princeton University Press; 2019. 340p.
Rochette P, Janzen HH. Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosyst. 2005;73:171-9. Doi: 10.1007/s10705-005-0357-9. DOI: https://doi.org/10.1007/s10705-005-0357-9
Rockström J, Steffen W, Noone K, Persson Å, Chapin 3rd FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber H, Nykvist B, De Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J. Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc [Internet]. 2009 [cited 2024 Dec 27];14(2):32. Available from: https://ecologyandsociety.org/vol14/iss2/art32/ DOI: https://doi.org/10.5751/ES-03180-140232
Rodríguez Cerchi M. Circularidad de nutrientes en producción de leche en Uruguay: sistemas de gestión de efluentes de tambo implementados por la academia y evaluados en un proyecto multi-institucional: estudio de casos [Internet]. Montevideo: Universidad de la República; 2021 [cited 2024 Dec 27]. 37p. Available from: https://www.inale.org/wp-content/uploads/2022/04/Proyecto-Circularidad-de-Nutrientes-en-tambos_URU_20_006_finall.pdf
Ryan W, Hennessy D, Murphy JJ, Boland TM, Shalloo L. A model of nitrogen efficiency in contrasting grass-based dairy systems. J Dairy Sci. 2011;94(2):1032-44. Doi: 10.3168/jds.2010-3294. DOI: https://doi.org/10.3168/jds.2010-3294
Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual. 2013;42(5):130826. Doi: 10.2134/jeq2013.03.0098. DOI: https://doi.org/10.2134/jeq2013.03.0098
Sharpley AN, Bergström L, Aronsson H, Bechmann M, Bolster CH, Börling K, Djodjic F, Jarvie HP, Schoumans OF, Stamm C, Tonderski KS, Ulén B, Uusitalo R, Withers PJ. Future agriculture with minimized phosphorus losses to waters: research needs and direction. Ambio. 2015;44 Suppl 2:S163-79. Doi: 10.1007/s13280-014-0612-x. DOI: https://doi.org/10.1007/s13280-014-0612-x
Smith DR, Haney RL, Huang C. Phosphorus fertilization, soil stratification, and potential water quality impacts. J Soil Water Conserv. 2017;72(5):417-24. Doi: 10.2489/jswc.72.5.417. DOI: https://doi.org/10.2489/jswc.72.5.417
Sposito V. System thinking: foundations, perspectives, methodologies, methods practice. Melbourne: Deakin University; 2021. 54p.
Stirling S, Lussich F, Ortega G, La Manna A, Pedemonte A, Artagaveytia J, Giudice G, Fariña S, Chilibroste P, Lattanzi FA. Balancing nitrogen at the farm gate: economic-environmental sustainability trade-off in pastoral dairy systems of Uruguay. Agrocienc Urug. 2024;28(NE1):e1243. Doi: 10.31285/AGRO.28.1243. DOI: https://doi.org/10.31285/AGRO.28.1243
Tayyab U, McLean FA. Phosphorus losses and on-farm mitigation options for dairy farming systems: a review. J Anim Plant Sci [Internet]. 2015 [cited 2024 Dec 27];25(2):318-27. Available from: https://www.thejaps.org.pk/docs/v-25-02/01.pdf DOI: https://doi.org/10.1055/s-0035-1564317
Thompson P. Agricultural sustainability: what it is and what it is not. Int J Agric Sustain. 2007;5(1):5-16. Doi: 10.1080/14735903.2007.9684809. DOI: https://doi.org/10.1080/14735903.2007.9684809
Tubiello FN, Salvatore M, Ferrara AF, House J, Federici S, Rossi S, Biancalani R, Condor Golec RD, Jacobs H, Flammini A, Prosperi P, Cardenas-Galindo P, Schmidhuber J, Sanz Sanchez MJ, Srivastava N, Smith P. The contribution of agriculture, forestry and other land use activities to global warming, 1990-2012. Glob Chang Biol. 2015;21(7):2655-60. Doi: 10.1111/gcb.12865. DOI: https://doi.org/10.1111/gcb.12865
van Leeuwen M, van Middelaar C, Oenema J, van Dam JC, Stoorvogel JJ, Stoof CR, de Boer IJM. The relevance of spatial scales in nutrient balances on dairy farms. Agric Ecosyst Environ. 2019;269:125-39. Doi: 10.1016/j.agee.2018.09.026. DOI: https://doi.org/10.1016/j.agee.2018.09.026
Veltman K, Jones CD, Gaillard R, Cela S, Chase L, Duval BD, Izaurralde RC, Ketterings QM, Li C, Matlock M, Reddy A, Rotz A, Salas W, Vadas P, Jolliet O. Comparison of process-based models to quantify nutrient flows and greenhouse gas emissions associated with milk production. Agric Ecosyst Environ. 2017;237:31-44. Doi: 10.1016/j.agee.2016.12.018. DOI: https://doi.org/10.1016/j.agee.2016.12.018
Wedderburn ME, Montes de Oca O, Dieguez F. Developing frameworks to assess impacts of multiple drivers of change on grassland systems. In: Michalk DL, Millar GD, Badgery WB, Broadfoot KM, editors. Revitalising grasslands to sustain our communities. Proceedings 22nd International Grassland Congress; 15-19 September 2013. Kite St.: New South Wales Department of Primary Industry; 2013. p. 1797-801.
Withers PJ, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ. Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol. 2014;48(12):6523-30. Doi: 10.1021/es501670j. DOI: https://doi.org/10.1021/es501670j
Zhang Y, Yu Q. Identification of current research intensity and influence factors of agricultural nitrogen loss from cropping systems. J Clean Prod. 2020;276:123308. Doi: 10.1016/j.jclepro.2020.123308. DOI: https://doi.org/10.1016/j.jclepro.2020.123308

Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Agrociencia Uruguay

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Métricas do artigo | |
---|---|
Vistas abstratas | |
Visualizações da cozinha | |
Visualizações de PDF | |
Visualizações em HTML | |
Outras visualizações |