Agent-based modelling applied to nitrogen and phosphorus assessment in agroecosystems

A case study of a Uruguayan dairy farm

Authors

DOI:

https://doi.org/10.31285/AGRO.29.1141

Keywords:

ABM, dairy farm, ecological modeling, nutrient budget, nutrient efficiency

Abstract

In Uruguay, dairy production is essential for the country and is under scrutiny due to the environmental impacts it can cause. Impacts are primarily the result of inefficient management practices which lead to an excessive use of nutrients —mainly nitrogen (N) and phosphorus (P)— and their surplus flow into the environment, affecting soil, groundwater, and rivers. In this context, this paper explains research that has generated new knowledge for Uruguay's dairy sector to achieve more sustainable production by understanding which farm management practices maximize nutrient efficiency while reducing environmental damage. The research used a multi-methodology approach for the case study of a typical Uruguayan dairy farm by applying the Nutrient Budget Method and developing an Agent-Based Model (ABM) called Nitrogen Phosphorus Management (NPM). Nutrient budgeting is a valuable and straightforward method for analyzing farm data and evaluating all the nutrient inputs and outputs. However, it has some visual and research limitations that can be complemented with suitable agent-based modeling. The ABM modeling approach enables the analysis of the model’s agents in space and time, capturing the agroecosystem’s heterogeneity. Through their combined application, the research results demonstrate that, along with the use of correct management practices, it is possible to improve nutrient efficiency, and, in this way, dairy production systems can be less dependent on external nutrient inputs. The main findings indicate that nitrogen biological fixation, pastoral diets, cow stocking rates, and phosphorus accumulation in soils are key management variables that affect nutrient efficiency and environmental impacts.

Downloads

Download data is not yet available.

References

Aarons SR, Gourley CJP, Powell JM. Nutrient intake, excretion and use efficiency of grazing lactating herds on commercial dairy farms. Animals (Basel). 2020;10(3):390. Doi: 10.3390/ani10030390. DOI: https://doi.org/10.3390/ani10030390

ArcMap [software]. Version 10.7.1. Redlands: Esri; 2019 [cited 2024 Dec 27]. Available from: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/overview

Arriaga H, Pinto M, Calsamiglia S, Merino P. Nutritional and management strategies on nitrogen and phosphorus use efficiency of lactating dairy cattle on commercial farms: an environmental perspective. J Dairy Sci. 2009;92(1):204-15. Doi: 10.3168/jds.2008-1304. DOI: https://doi.org/10.3168/jds.2008-1304

Aubriot L, Delbene L, Haakonsson S, Somma A, Hirsch F, Bonilla S. Evolution of eutrophication in Santa Lucía River: influence of land use intensification and perspectives. Innotec. 2017;14:7-16. Doi: 10.26461/14.04. DOI: https://doi.org/10.26461/14.04

Carbó LI. Balances de nutrientes como herramienta para estimar el potencial para el reciclado de los efluentes de tambo en recursos forrajeros [specialization certificate on Internet]. Buenos Aires (AR): Universidad de Buenos Aires, Facultad de Agronomía; 2012 [cited 2024 Dec 27]. 54p. Available from: http://ri.agro.uba.ar/greenstone3/library/collection/tesis/document/2011carbolornaileana

Charlón V, Carbó L, Herrero MA, Cuatrin A. Balance de nitrógeno en tambos y su relación con indicadores de estructura y de manejo. Rev Arg Prod Anim. 2014;34 Suppl. 1:266.

Cherry KA, Shepherd M, Withers PJ, Mooney SJ. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: a review of methods. Sci Total Environ. 2008;406(1-2):1-23. Doi: 10.1016/j.scitotenv.2008.07.015. DOI: https://doi.org/10.1016/j.scitotenv.2008.07.015

Circularidad de nutrientes [Internet]. Uruguay: Proyecto BIOVALOR; 2014-2020 [cited 2024 Dec 27]. Available from: https://biovalor.gub.uy/circularidad-nutrientes/

Darré E, Llanos E, Astigarraga L, Cadenazzi M, Picasso V. Do pasture-based mixed dairy systems with higher milk production have lower environmental impacts?: a Uruguayan case study. New Zeal J Agr Res. 2021;64(3):444-62. Doi: 10.1080/00288233.2020.1750433. DOI: https://doi.org/10.1080/00288233.2020.1750433

Davidson EA, Suddick EC, Rice CW, Prokopy LS. More food, low pollution (mo fo lo Po): a grand challenge for the 21st century. J Environ Qual. 2015;44(2):305-11. Doi: 10.2134/jeq2015.02.0078. DOI: https://doi.org/10.2134/jeq2015.02.0078

De Lucca A. Pérdidas de fósforo por escorrentía desde el suelo, fertilizante y estiércol: cuantificación y distribución en el tiempo [master’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2020. 54p.

Dong H, Mangino J, McAllister TA, Hatfield JR, Johnson DE, Lassey KR, de Lima MA, Romanovskaya A. Emissions from livestock and manure management. In: Eggleston S, Buendia L, Miwa K, Ngara T, Tanabe K, editors. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Vol. 4, Agriculture, forestry and other land use. Hayama: IGES; 2006. 87p.

Erosion 6 [software]. Montevideo: Universidad de la República; [cited 2024 Dec 27]. Available from: https://portal.fagro.edu.uy/servicios/erosion-6/

Eurostat. Analysis of methodologies for calculating greenhouse gas and ammonia emissions and nutrient balances. Luxembourg: European Union; 2011. 59p. Doi: 10.2785/21209.

Fernández-Marcos ML. Contaminación por fósforo procedente de la fertilización orgánica de suelos agrícolas. In: López Mosquera ME, Sáinz Osés MJ, editors. Gestión de residuos orgánicos de uso agrícola [Internet]. Santiago de Compostela: Universidade de Santiago de Compostela; 2011 [cited 2024 Dec 27]. p. 25­35. Available from: https://www.researchgate.net/publication/230688083_Contaminacion_por_fosforo_procedente_de_la_fertilizacion_organica_de_suelos_agricolas

Garcia L, Dubeux JCB, Sollenberger LE, Vendramini JMB, DiLorenzo N, Santos ERS, Jaramillo DM, Ruiz MM. Nutrient excretion from cattle grazing nitrogen-fertilized grass or grass-legume pastures. Agron J. 2021;113(4):3110-23. Doi: 10.1002/agj2.20675. DOI: https://doi.org/10.1002/agj2.20675

Gliessman S. Agroecology and agroecosystems. In: Agroecosystems analysis. Madison: American Society of Agronomy; 2004. p. 19-30. DOI: https://doi.org/10.2134/agronmonogr43.c2

Google Earth [Software]. Version 9.0. Mountain View: Google LLC; 2021.

Gourley CJP, Aarons SR, Awty IM, Gibson DM, Hannah MC, Smith AP, Peverill KI. Farm-scale nitrogen, phosphorus, potassium and sulfur balances and use efficiencies on Australian dairy farms. Anim Prod Sci. 2012;52(10):929-44. Doi: 10.1071/AN11337. DOI: https://doi.org/10.1071/AN11337

Gourley CJP, Powell JM, Dougherty WJ, Weaver DM. Nutrient budgeting as an approach to improving nutrient management on Australian dairy farms. Aust J Exp Agric. 2007;47(9):1064-74. Doi: 10.1071/EA07017. DOI: https://doi.org/10.1071/EA07017

Grimm V, Railsback SF, Vincenot CE, Berger U, Gallagher C, DeAngelis DL, Edmonds B, Ge J, Giske J, Groeneveld J, Johnston ASA, Milles A, Nabe-Nielsen J, Polhill JG, Radchuk V, Rohwäder M-S, Stillman RA, Thiele JC, Ayllón D. The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J Artif Soc Soc Simul. 2020;23(2):7. Doi: 10.18564/jasss.4259. DOI: https://doi.org/10.18564/jasss.4259

INALE. Modelo lechero 10 y Modelo lechero 12: ejercicio 2019-2020: resultados preliminares. Montevideo: INALE; 2020. 2p.

INALE. Uruguay Lechero [Internet]. [cited 2024 Dec 27]. Available from: https://www.inale.org/uruguay-lechero/

International Plant Nutrition Institute. Nitrogen. Nutri-Facts [Internet]. [cited 2025 Mar 20] (1):2p. Available from: https://nutrien-ekonomics.com/wp-content/uploads/2025/01/IPNI-Nutrifacts_Nitrogen.pdf

IPCC; FAO; IFAD. Emerging activities to combat climate change – use of FAO data and IPCC GHG Inventory Guidelines for agriculture and Land Use: Report of Joint FAO-IPCC-IFAD Expert Meeting on Emerging activities to combat climate change – use of FAO data and IPCC GHG Inventory Guidelines for Agriculture and Land Use [Internet]. Rome: IPCC; 2015 [cited 2024 Dec 27]. 40p. Available from: https://www.ipcc-nggip.iges.or.jp/public/mtdocs/pdfiles/1411_FAO-IPCC-IFAD_Rome_AFOLU.pdf

Kleinman PJ, Sharpley AN, Withers PJ, Bergström L, Johnson LT, Doody DG. Implementing agricultural phosphorus science and management to combat eutrophication. Ambio. 2015;44 Suppl 2:S297-310. Doi: 10.1007/s13280-015-0631-2. DOI: https://doi.org/10.1007/s13280-015-0631-2

Ledgard S, Schils R, Eriksen J, Luo J. Environmental impacts of grazed clover/grass pastures. Ir J Agric Food Res. 2009;48(2):209-26.

Lemaire G, Gastal F, Franzluebbers A, Chabbi A. Grassland-cropping rotations: an avenue for agricultural diversification to reconcile high production with environmental quality. Environ Manage. 2015;56(5):1065-77. Doi: 10.1007/s00267-015-0561-6. DOI: https://doi.org/10.1007/s00267-015-0561-6

Lizarralde J. Relación entre la huella de carbono y las prácticas de manejo en predios lecheros del Uruguay [master’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 2013. 59p.

Los treinta. Integrantes [Internet]. [cited 2024 Dec 27]. Available from: https://lostreinta.uy/#!/-integrantes/

McKnight L, Ibeagha-Awemu E. Modeling of livestock systems to enhance efficiency. Anim Front. 2019;9(2):3-5. Doi: 10.1093/af/vfz011. DOI: https://doi.org/10.1093/af/vfz011

Mieres JM. Guía para la alimentación de rumiantes. Montevideo: INIA; 2004. 81p.

Ministerio de Ambiente (UY). Inventario Nacional de Gases de Efecto Invernadero: serie temporal 1990-2017 [Internet]. Uruguay: MA; 2020 [cited 2024 Dec 27]. 18p. Available from: https://www.gub.uy/ministerio-ambiente/sites/ministerio-ambiente/files/2021-04/Folleto%20INGEI%20Serie%201990-%202017.pdf

Ministerio de Ganadería, Agricultura y Pesca, DIEA (UY). Regiones agropecuarias del Uruguay [Internet]. Montevideo: MGAP; 2015 [cited 2024 Dec 27]. 38p. Available from: http://www.mgap.gub.uy/dieaanterior/regiones/regiones2015.pdf

Ministerio de Vivienda y Ordenamiento Territorial (UY). Third national communication to the conference of the parties to the United Nations Framework Convention on Climate Change: executive summary. Montevideo: MVOT; 2010. 34p.

Morón A, Risso DF, editors. Nitrógeno en pasturas. Montevideo: INIA; 1994. 65p.

Mosier AR. Soil processes and global change. Biol Fertil Soils. 1998;27(3):221-9. Doi: 10.1007/s003740050424. DOI: https://doi.org/10.1007/s003740050424

Moss B. Water pollution by agriculture. Philos Trans R Soc Lond B Biol Sci. 2008;363(1491):659-66. Doi: 10.1098/rstb.2007.2176. DOI: https://doi.org/10.1098/rstb.2007.2176

NetLogo [Internet]. Evanston: Northwestern University; 2021 [cited 2024 Dec 27]. Available from: http://ccl.northwestern.edu/netlogo-ccl.shtml

NRC. Air emissions from animal feeding operations: current knowledge, future needs. Washington: National Academies Press, 2003. 263p.

NRC. Nutrient requirements of dairy cattle. 7th rev. ed. Washington: National Academies Press; 2001. 381p.

Otero A, Castro M. Variability of alfalfa (Medicago sativa L.) seasonal forage production in the southwest of Uruguay. Agrocienc Urug. 2019;23(1):e65. Doi: 10.31285/AGRO.23.1.9. DOI: https://doi.org/10.31285/AGRO.23.1.9

Paerl HW, Dennis RL, Whitall DR. Atmospheric deposition of nitrogen: implications for nutrient over-enrichment of coastal waters. Estuaries. 2002;25(4):677-93. DOI: https://doi.org/10.1007/BF02804899

Perdomo C, Irissari P, Ernst O. Nitrous oxide emissions from an Uruguayan argiudoll under different tillage and rotation treatments. Nutr Cycl Agroecosyst. 2009;84(2):119-28. Doi: 10.1007/s10705-008-9231-x. DOI: https://doi.org/10.1007/s10705-008-9231-x

Perdomo CH, Barreto P, Piñeiro V. Pérdida de fósforo desde suelos agrícolas hacia aguas superficiales: resultados preliminares para Uruguay y posibles medidas de manejo para mitigar riesgos. In: Buscando el camino para la intensificación sostenible para la agricultura. IV Simposio Nacional de Agricultura; 2015 28-29 octubre; Paysandú, Uruguay. Montevideo: Universidad de la República; 2015. p. 77-94.

Powell JM, Gourley CJP, Rotz CA, Weaver DM. Nitrogen use efficiency: a potential performance indicator and policy tool for dairy farms. Environ Sci Policy. 2010;13(3):217-28. Doi: 10.1016/j.envsci.2010.03.007. DOI: https://doi.org/10.1016/j.envsci.2010.03.007

Prado A, Corré W, Gallejones P, Pardo G, Pinto M, Hierro O, Oenema O. NUTGRANJA 2.0: a simple mass balance model to explore the effects of different management strategies on nitrogen and greenhouse gases losses and soil phosphorus changes in dairy farms. Mitig Adapt Strateg Glob Chang. 2016;21(7):1145-64. Doi: 10.1007/s11027-014-9598-8. DOI: https://doi.org/10.1007/s11027-014-9598-8

Railsback SF, Grimm V. Agent-based and individual-based modelling: a practical introduction. 2nd ed. Princeton: Princeton University Press; 2019. 340p.

Rochette P, Janzen HH. Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosyst. 2005;73:171-9. Doi: 10.1007/s10705-005-0357-9. DOI: https://doi.org/10.1007/s10705-005-0357-9

Rockström J, Steffen W, Noone K, Persson Å, Chapin 3rd FS, Lambin E, Lenton TM, Scheffer M, Folke C, Schellnhuber H, Nykvist B, De Wit CA, Hughes T, van der Leeuw S, Rodhe H, Sörlin S, Snyder PK, Costanza R, Svedin U, Falkenmark M, Karlberg L, Corell RW, Fabry VJ, Hansen J, Walker B, Liverman D, Richardson K, Crutzen P, Foley J. Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc [Internet]. 2009 [cited 2024 Dec 27];14(2):32. Available from: https://ecologyandsociety.org/vol14/iss2/art32/ DOI: https://doi.org/10.5751/ES-03180-140232

Rodríguez Cerchi M. Circularidad de nutrientes en producción de leche en Uruguay: sistemas de gestión de efluentes de tambo implementados por la academia y evaluados en un proyecto multi-institucional: estudio de casos [Internet]. Montevideo: Universidad de la República; 2021 [cited 2024 Dec 27]. 37p. Available from: https://www.inale.org/wp-content/uploads/2022/04/Proyecto-Circularidad-de-Nutrientes-en-tambos_URU_20_006_finall.pdf

Ryan W, Hennessy D, Murphy JJ, Boland TM, Shalloo L. A model of nitrogen efficiency in contrasting grass-based dairy systems. J Dairy Sci. 2011;94(2):1032-44. Doi: 10.3168/jds.2010-3294. DOI: https://doi.org/10.3168/jds.2010-3294

Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P. Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual. 2013;42(5):1308­26. Doi: 10.2134/jeq2013.03.0098. DOI: https://doi.org/10.2134/jeq2013.03.0098

Sharpley AN, Bergström L, Aronsson H, Bechmann M, Bolster CH, Börling K, Djodjic F, Jarvie HP, Schoumans OF, Stamm C, Tonderski KS, Ulén B, Uusitalo R, Withers PJ. Future agriculture with minimized phosphorus losses to waters: research needs and direction. Ambio. 2015;44 Suppl 2:S163-79. Doi: 10.1007/s13280-014-0612-x. DOI: https://doi.org/10.1007/s13280-014-0612-x

Smith DR, Haney RL, Huang C. Phosphorus fertilization, soil stratification, and potential water quality impacts. J Soil Water Conserv. 2017;72(5):417-24. Doi: 10.2489/jswc.72.5.417. DOI: https://doi.org/10.2489/jswc.72.5.417

Sposito V. System thinking: foundations, perspectives, methodologies, methods practice. Melbourne: Deakin University; 2021. 54p.

Stirling S, Lussich F, Ortega G, La Manna A, Pedemonte A, Artagaveytia J, Giudice G, Fariña S, Chilibroste P, Lattanzi FA. Balancing nitrogen at the farm gate: economic-environmental sustainability trade-off in pastoral dairy systems of Uruguay. Agrocienc Urug. 2024;28(NE1):e1243. Doi: 10.31285/AGRO.28.1243. DOI: https://doi.org/10.31285/AGRO.28.1243

Tayyab U, McLean FA. Phosphorus losses and on-farm mitigation options for dairy farming systems: a review. J Anim Plant Sci [Internet]. 2015 [cited 2024 Dec 27];25(2):318-27. Available from: https://www.thejaps.org.pk/docs/v-25-02/01.pdf DOI: https://doi.org/10.1055/s-0035-1564317

Thompson P. Agricultural sustainability: what it is and what it is not. Int J Agric Sustain. 2007;5(1):5-16. Doi: 10.1080/14735903.2007.9684809. DOI: https://doi.org/10.1080/14735903.2007.9684809

Tubiello FN, Salvatore M, Ferrara AF, House J, Federici S, Rossi S, Biancalani R, Condor Golec RD, Jacobs H, Flammini A, Prosperi P, Cardenas-Galindo P, Schmidhuber J, Sanz Sanchez MJ, Srivastava N, Smith P. The contribution of agriculture, forestry and other land use activities to global warming, 1990-2012. Glob Chang Biol. 2015;21(7):2655-60. Doi: 10.1111/gcb.12865. DOI: https://doi.org/10.1111/gcb.12865

van Leeuwen M, van Middelaar C, Oenema J, van Dam JC, Stoorvogel JJ, Stoof CR, de Boer IJM. The relevance of spatial scales in nutrient balances on dairy farms. Agric Ecosyst Environ. 2019;269:125-39. Doi: 10.1016/j.agee.2018.09.026. DOI: https://doi.org/10.1016/j.agee.2018.09.026

Veltman K, Jones CD, Gaillard R, Cela S, Chase L, Duval BD, Izaurralde RC, Ketterings QM, Li C, Matlock M, Reddy A, Rotz A, Salas W, Vadas P, Jolliet O. Comparison of process-based models to quantify nutrient flows and greenhouse gas emissions associated with milk production. Agric Ecosyst Environ. 2017;237:31-44. Doi: 10.1016/j.agee.2016.12.018. DOI: https://doi.org/10.1016/j.agee.2016.12.018

Wedderburn ME, Montes de Oca O, Dieguez F. Developing frameworks to assess impacts of multiple drivers of change on grassland systems. In: Michalk DL, Millar GD, Badgery WB, Broadfoot KM, editors. Revitalising grasslands to sustain our communities. Proceedings 22nd International Grassland Congress; 15-19 September 2013. Kite St.: New South Wales Department of Primary Industry; 2013. p. 1797-801.

Withers PJ, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ. Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol. 2014;48(12):6523-30. Doi: 10.1021/es501670j. DOI: https://doi.org/10.1021/es501670j

Zhang Y, Yu Q. Identification of current research intensity and influence factors of agricultural nitrogen loss from cropping systems. J Clean Prod. 2020;276:123308. Doi: 10.1016/j.jclepro.2020.123308. DOI: https://doi.org/10.1016/j.jclepro.2020.123308

Downloads

Published

2025-03-24

How to Cite

1.
Sommer I, Faggian R, Sposito V, Dieguez Cameroni F. Agent-based modelling applied to nitrogen and phosphorus assessment in agroecosystems: A case study of a Uruguayan dairy farm. Agrocienc Urug [Internet]. 2025 Mar. 24 [cited 2025 Oct. 17];29:e1141. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1141

Issue

Section

Animal production and pastures
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)