Integrated catchment models for policy development and decision making
DOI:
https://doi.org/10.31285/AGRO.27.1194Keywords:
integrated catchment management, modelling, decision makingAbstract
Land-system change, freshwater use, biodiversity loss, and changes in biogeochemical flows affect the resilience of the Earth system as a whole. Effective communication between scientists and policy makers is critical in addressing these challenges. Simulation models can be used as integrators of knowledge and data, and play a key role in facilitating effective boundary work between science and policy. Key issues identified are the reliability of model outcomes and the acknowledgement of their uncertainty. However, the use of models provides an advantage when analysing scenarios. Integrated catchment models can provide feedback about joint interpretation of the data and conceptual understanding, resulting in the identification of data needs. The difficulties related to improving how science informs policy is one of communication and negotiation at the boundary, and models can assist in the co-production between researchers and decision makers.
Downloads
References
Alonso J, Gorgoglione A, Debone JP, Martínez P, Pou M, Vilaseca F. Monitoreo orientado a la modelación hidrológica integrada cantidad-calidad: piloto cuenca alta del Arroyo Molino. Montevideo: Universidad de la República; 2023. 84p.
Alonso J, Silveira L. Estimación de la disponibilidad hídrica en microcuencas forestadas con Eucalyptus. In: II Congreso Agua Ambiente y Energía; 2019 Sep 25-27; Montevideo, Uruguay [Internet]. Montevideo: AUGM; 2019 [cited 2023 Sep 4]. 6p. Available from: https://bit.ly/3Lolbtg
Ancev T, Stoecker AL. Least-cost watershed management solutions: Using GIS data in economic modeling of a watershed. In: 2003 Annual Meeting of the Southern Agricultural Economics Association. Alabama: Southern Agricultural Economics Association; 2003. 20p. Doi: 10.22004/ag.econ.35005.
Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK. SWAT: model use, calibration, and validation. Trans ASABE. 2012;55(4):1491-508. DOI: https://doi.org/10.13031/2013.42256
Aznarez C, Jimeno-Sáez P, López-Ballesteros A, Pacheco JP, Senent-Aparicio J. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sens. 2021;13(10):2014. Doi: 10.3390/rs13102014. DOI: https://doi.org/10.3390/rs13102014
Burgman M. Governance for effective policy-relevant scientific research: the shared governance model. Asia Pacific Policy Stud. 2015;2:441-51. DOI: https://doi.org/10.1002/app5.104
Cairney P. Three habits of successful policy entrepreneurs. Policy Polit. 2018;46(2):199-215. DOI: https://doi.org/10.1332/030557318X15230056771696
Colloff MF, Wilson BM, Seale-Carlisle TM, Wixted JT. Optimizing the selection of fillers in police lineups. Proc Natl Acad Sci U S A. 2021;118(8):e2017292118. Doi: 10.1073/pnas.2017292118. DOI: https://doi.org/10.1073/pnas.2017292118
Crane A, Palazzo G, Spence LJ, Matten D. Contesting the value of “Creating Shared Value”. Calif Manage Rev. 2014;56(2):130-53. DOI: https://doi.org/10.1525/cmr.2014.56.2.130
Cvitanovic C, McDonald J, Hobday AJ. From science to action: principles for undertaking environmental research that enables knowledge exchange and evidence-based decision-making. J Environ Manage. 2016;183(Pt 3):864-74. Doi: 10.1016/j.jenvman.2016.09.038. DOI: https://doi.org/10.1016/j.jenvman.2016.09.038
Delkash M, Al‐Faraj FAM, Scholz M. Impacts of anthropogenic land use changes on nutrient concentrations in surface waterbodies: a review. Clean (Weinh). 2018;46(5):1800051. Doi: 10.1002/clen.201800051. DOI: https://doi.org/10.1002/clen.201800051
Dingle S. Murray-Darling Basin Plan: $8 billion spent and still the Coorong wetland is dying. ABC News [Internet]. 2018 Apr 26 [cited 2023 Sep 4]. Available from: https://www.abc.net.au/news/2018-04-27/coorong-murray-darling-basin-how-to-kill-a-river-system/9698108
Fabbri A, Lai A, Grundy Q, Bero LA. The influence of industry sponsorship on the research agenda: a scoping review. Am J Public Health. 2018;108(11):e9-e16. Doi: 10.2105/AJPH.2018.304677. DOI: https://doi.org/10.2105/AJPH.2018.304677
GMIC. Grupo interinstitucional de herramientas de modelación para la gestión de la cantidad y calidad de agua [Internet]. 2020 [cited 2023 Sep 4]. Available from: https://proyectoinia-iri-usyd.github.io/GmicUy/
Greenwood R, Raynard M, Kodeih F, Micelotta ER, Lounsbury M. Institutional complexity and organizational responses. Acad Manag Ann. 2011;5(1):317-71. DOI: https://doi.org/10.5465/19416520.2011.590299
Gustafsson KM, Lidskog R. Boundary organizations and environmental governance: Performance, institutional design, and conceptual development. Clim Risk Manag. 2018;19:1-11. Doi: 10.1016/j.crm.2017.11.001. DOI: https://doi.org/10.1016/j.crm.2017.11.001
Hall CA, Saia SM, Popp AL, Dogulu N, Schymanski SJ, Drost N, van Emmerik T, Hut R. A hydrologist’s guide to open science. Hydrol Earth Syst Sci. 2022;26:647-64. Doi: 10.5194/hess-26-647-2022. DOI: https://doi.org/10.5194/hess-26-647-2022
Han E, Baethgen WE, Ines AVM, Mer F, Souza JS, Berterretche M, Atunez G, Barreira C. SIMAGRI: an agro-climate decision support tool. Comput Electron Agric. 2019;161:241-51. Doi: 10.1016/j.compag.2018.06.034. DOI: https://doi.org/10.1016/j.compag.2018.06.034
Han E, Ines AVM, Baethgen WE. Climate-Agriculture-Modeling and Decision Tool (CAMDT): a software framework for climate risk management in agriculture. Environ Model Softw. 2017;95:102-14. Doi: 10.1016/j.envsoft.2017.06.024. DOI: https://doi.org/10.1016/j.envsoft.2017.06.024
Hastings F, Mer F, Alonso J, Navas R, Kok P. Modelación con SWAT en la cuenca del Santa Lucía: un ejemplo exitoso de trabajo interinstitucional e interdisciplinario para la gestión de los Recursos Hídricos en Uruguay. In: II Congreso Agua Ambiente y Energía; 2019 Sep 25-27; Montevideo, Uruguay [Internet]. Montevideo: AUGM; 2019 [cited 2023 Sep 4]. 6p. Available from: https://bit.ly/341Uy7a
Hastings F, Perez-Bidegain M, Navas R, Gorgoglione A. Impacts of irrigation development on water quality in the San Salvador watershed (Part 1): assessment of current nutrient delivery and transport using SWAT. Agrocienc Urug. Forthcoming 2023. DOI: https://doi.org/10.31285/AGRO.27.1198
Hepburn C. Environmental policy, government, and the market. Oxf Rev Econ Policy. 2010;26(2):117-36. DOI: https://doi.org/10.1093/oxrep/grq016
Holwell S. Soft systems methodology: other voices. Syst Pract Action Res. 2000;13(6):773-97. DOI: https://doi.org/10.1023/A:1026479529130
Hoppe R. From “knowledge use” towards “boundary work”: sketch of an emerging new agenda for inquiry into science-policy interaction. In: in ’t Veld RJ, editor. Knowledge democracy: consequences for science, politics, and media. Berlin: Springer; 2010. pp. 169-86. Doi: 10.1007/978-3-642-11381-9_13. DOI: https://doi.org/10.1007/978-3-642-11381-9_13
Janjić J, Tadić L. Fields of application of SWAT hydrological model: a review. Earth. 2023;4(2):331-44. DOI: https://doi.org/10.3390/earth4020018
Lee LY, Ancev T, Vervoort W. Evaluation of environmental policies targeting irrigated agriculture: the case of the Mooki catchment, Australia. Agric Water Manag. 2012;109:107-16. DOI: https://doi.org/10.1016/j.agwat.2012.02.011
Linden B. Basic blue skies research in the UK: are we losing out? J Biomed Discov Collab. 2008;3:3. Doi: 10.1186/1747-5333-3-3. DOI: https://doi.org/10.1186/1747-5333-3-3
Lintern A, Webb JA, Ryu D, Liu S, Bende‐Michl U, Waters D, Leahy P, Wilson P, Western AW. Key factors influencing differences in stream water quality across space. WIREs Water. 2018;5(1):e1260. Doi: 10.1002/wat2.1260. DOI: https://doi.org/10.1002/wat2.1260
Loucks DP. Science informed policies for managing water. Hydrology. 2021;8(2):66. Doi: 10.3390/hydrology8020066. DOI: https://doi.org/10.3390/hydrology8020066
Maier HR, Guillaume JHA, van Delden H, Riddell GA, Haasnoot M, Kwakkel JH. An uncertain future, deep uncertainty, scenarios, robustness and adaptation: how do they fit together? Environ Model Softw. 2016;81:154-64. Doi: 10.1016/j.envsoft.2016.03.014. DOI: https://doi.org/10.1016/j.envsoft.2016.03.014
McLaren D, Markusson N. The co-evolution of technological promises, modelling, policies and climate change targets. Nat Clim Chang. 2020;10:392-7. Doi: 10.1038/s41558-020-0740-1. DOI: https://doi.org/10.1038/s41558-020-0740-1
Meinke H, Nelson R, Kokic P, Stone R, Selvaraju R, Baethgen W. Actionable climate knowledge: from analysis to synthesis. Clim Res. 2006;33:101-10. DOI: https://doi.org/10.3354/cr033101
Menéndez C. Monitoreo de Ursea encontró glifosato en el agua potable de muestras de Colonia, Maldonado, Lavalleja, Canelones y Florida. La Diaria [Internet]. 2022 Nov 19 [cited 2023 Mar 14]. Available from: https://bit.ly/3sBxQSV
Mer F, Vervoort RW, Baethgen W. Building trust in SWAT model scenarios through a multi-institutional approach in Uruguay. Socio-Environ Syst Model. 2020;2:17892. Doi: 10.18174/sesmo.2020a17892. DOI: https://doi.org/10.18174/sesmo.2020a17892
Ministerio de Ambiente (UY). Herramientas de modelación en la gestión ambiental [Internet]. Montevideo: MA; 2022 [cited 2023 Sep 4]. Available from: https://www.gub.uy/ministerio-ambiente/comunicacion/noticias/herramientas-modelacion-gestion-ambiental
Mueller B. Why public policies fail: Policymaking under complexity. EconomiA. 2020;21(2):311-23. DOI: https://doi.org/10.1016/j.econ.2019.11.002
Narbondo S, Crisci M, Chreties C. Modelación hidrológica diaria en cuencas con diferentes caracetrísticas de Uruguay. In: XXVIII Congreso Latinoamericano de Hidráulica; 2018 Sep 18-21; Buenos Aires, Argentina [Internet]. Buenos Aires: IAHR; 2018 [cited 2023 Sep 4]. 2p. Available from: https://www.ina.gob.ar/congreso_hidraulica/resumenes/LADHI_2018_RE_216.pdf
Navas R, Alonso J, Gorgoglione A, Vervoort RW. Identifying climate and human impact trends in streamflow: a case study in Uruguay. Water. 2019;11(7):1433. Doi: 10.3390/w11071433. DOI: https://doi.org/10.3390/w11071433
Nervi E, Borges M, Gelós M, Alonso J, Navas R, Kok P, Hastings F, Valles J, Erasun V, Souto A, Frabasile F, Rosas F, Vervoort RW, Baethgen W. Apoyo a la gestión de los recursos hídricos en Uruguay: Grupo de modelación integrada de cuenca: experiencia de trabajo interinstitucional. In: Cambios, desafíos y soluciones: el rol de la Ingeniería Ambiental en el desarrollo sostenible [Internet]. XI Congreso Nacional de AIDIS; 2022 Oct 3-5; Montevideo, Uruguay. Montevideo: AIDIS; 2022 [cited 2023 Sep 4]. 9p. Available form: https://aidis.org.uy/wp-content/uploads/2022/11/Nervi-Eliana.pdf
Nervi E, Gelós M, Kok P, Alonso J, Navas R, Badano l, Neighbur N, Hastings F, Vervoort RW, Baethgen W. Evaluación de escenarios de uso de suelo en una subcuenca del Río Santa Lucía utilizando el modelo SWAT. In: Cambios, desafíos y soluciones: el rol de la Ingeniería Ambiental en el desarrollo sostenible [Internet]. XI Congreso Nacional de AIDIS; 2022 Oct 3-5; Montevideo, Uruguay. Montevideo: AIDIS; 2022 [cited 2023 Sep 4]. 8p. Available form: https://aidis.org.uy/wp-content/uploads/2022/11/Nervi-Eliana-2.pdf
Nervi E, Gorgoglione A, Vervoort RW, Sposito V, Faggian R. Aplicación del modelo SWAT en estudios de la presencia de glifosato en escorrentías rurales en una subcuenca del río Santa Lucía. In: II Congreso Agua Ambiente y Energía; 2019 Sep 25-27; Montevideo, Uruguay [Internet]. Montevideo: AUGM; 2019 [cited 2023 Sep 4]. 6p. Available from: https://bit.ly/3Zl8QM0
Oreskes N, Shrader-Frechette K, Belitz K. Verification, validation, and confirmation of numerical models in the Earth sciences. Science. 1994;263(5147):641-6. Doi: 10.1126/science.263.5147.641. DOI: https://doi.org/10.1126/science.263.5147.641
Pappenberger F, Beven KJ. Ignorance is bliss: or seven reasons not to use uncertainty analysis. Water Resour Res. 2006;42(5). Doi: 10.1029/2005WR004820. DOI: https://doi.org/10.1029/2005WR004820
Pielke JRA. The honest broker: making sense of science in policy and politics. Cambridge: Cambridge University Press; 2007. 188p. DOI: https://doi.org/10.1017/CBO9780511818110
Prato T, Herath G. Multiple-criteria decision analysis for integrated catchment management. Ecol Econ. 2007;63(2-3):627-32. DOI: https://doi.org/10.1016/j.ecolecon.2007.01.003
Ritter A, Muñoz-Carpena R. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to Everglades National Park. J Hydrol. 2006;317(3-4):340-54. DOI: https://doi.org/10.1016/j.jhydrol.2005.05.025
Rizzo G, Mazzilli SR, Ernst O, Baethgen WE, Berger AG. Season-specific management strategies for rainfed soybean in the South American Pampas based on a seasonal precipitation forecast. Agric Syst. 2022;196:103331. Doi: 10.1016/j.agsy.2021.103331. DOI: https://doi.org/10.1016/j.agsy.2021.103331
Rose DC, Mukherjee N, Simmons BI, Tew ER, Robertson RJ, Vadrot ABM, Doubleday R, Sutherland WJ. Policy windows for the environment: tips for improving the uptake of scientific knowledge. Environ Sci Policy. 2020;113:47-54. DOI: https://doi.org/10.1016/j.envsci.2017.07.013
Ryan D. Strengthening links between science and governments for the development of public policies in Latin America. Policy Brief 2019 [Internet]. 2019 [cited 2023 Sep 4]. Available from: http://sarasinstitute.org/wpcontent/uploads/2020/05/PolicyBrief_Ryan_2019.pdf
Saracho A, Navas R, Gamazo P, Alvareda E. Impact of irrigation and reservoirs on the flow regime of small agricultural basins. Paper presented at: AHS-AISH Scientific Assembly; 2022 May 29 - Jun 5; Montpellier, France. DOI: https://doi.org/10.5194/iahs2022-754
Shunglu R, Köpke S, Kanoi L, Nissanka TS, Withanachchi CR, Gamage DU, Dissanayake HR, Kibaroglu A, Ünver O, Withanachchi SS. Barriers in participative water governance: a critical analysis of community development approaches. Water. 2022;14(5):762. Doi: 10.3390/w14050762. DOI: https://doi.org/10.3390/w14050762
Silveira L, Chreties C, Crisci M, Usera G, Alonso J. Sistema de alerta temprana para previsión de avenidas en la ciudad de Durazno. INNOTEC. 2015;(10):56-63. Doi: 10.26461/10.05. DOI: https://doi.org/10.26461/10.05
Souto-Pérez A, Carriquiry MA, Navas R, Rosas F. Assessing the impact of agricultural intensification on water pollution: an integrated model assessment of the San Salvador Basin in Uruguay. Paper presented at: 2021 AAEA & WAEA Joint Annual Meeting; 2021 Aug 1-3; Austin Texas, US.
Steffen W, Richardson K, Rockström J, Cornell SE, Fetzer I, Bennett EM, Biggs R, Carpenter SR, de Vries W, de Wit CA, Folke C, Gerten D, Heinke J, Mace GM, Persson LM, Ramanathan V, Reyers B, Sörlin S. Sustainability: planetary boundaries: guiding human development on a changing planet. Science. 2015;347(6223):1259855. Doi: 10.1126/science.1259855. DOI: https://doi.org/10.1126/science.1259855
Stosch K, Quilliam R, Bunnefeld N, Oliver D. Managing multiple catchment demands for sustainable water use and ecosystem service provision. Water. 2017;9(9):677. Doi: 10.3390/w9090677. DOI: https://doi.org/10.3390/w9090677
Stosch KC, Quilliam RS, Bunnefeld N, Oliver DM. Rapid characterisation of stakeholder networks in three catchments reveals contrasting land-water management issues. Land. 2022;11(12):2324. Doi: 10.3390/land11122324. DOI: https://doi.org/10.3390/land11122324
Thompson RM, Barbour EJ, Bradshaw CJA, Briggs S, Byron N, Grace M, Hart T, King AJ, Likens GE, Pollino CA, Sheldon F, Stewardson MJ, Thoms M, Watts RB, Webb JA. Principles for scientists working at the river science-policy interface. River Res Appl. 2022;38(5):819-31. Doi: 10.1002/rra.3951. DOI: https://doi.org/10.1002/rra.3951
Trimble M, Torres PHC, Jacobi PR, Dias Tadeu N, Salvadores F, Mac Donnell L, Olivier T, Giordano G, dos Anjos LAP, Santana-Chaves IM, Pascual M, Mazzeo N, Jobbágy E. Towards adaptive water governance in South America: lessons from water crises in Argentina, Brazil, and Uruguay. In: Leal Filho W, Azeiteiro UM, Setti AFF, editors. Sustainability in natural resources management and land planning. Cham: Springer; 2021. pp. 31-46. Doi: 10.1007/978-3-030-76624-5_3.
Vilaseca F, Narbondo S, Chreties C, Castro A, Gorgoglione A. A comparison between lumped and distributed hydrological models for daily rainfall-runoff simulation. IOP Conf Ser Earth Environ Sci. 2021;958:012016. Doi: 10.1088/1755-1315/958/1/012016. DOI: https://doi.org/10.1088/1755-1315/958/1/012016
Voulvoulis N, Burgman MA. The contrasting roles of science and technology in environmental challenges. Crit Rev Environ Sci Technol. 2019;49:1079-106. DOI: https://doi.org/10.1080/10643389.2019.1565519
Xu H, Berres A, Liu Y, Allen-Dumas MR, Sanyal J. An overview of visualization and visual analytics applications in water resources management. Environ Model Softw. 2022;153:105396. Doi: 10.1016/j.envsoft.2022.105396. DOI: https://doi.org/10.1016/j.envsoft.2022.105396
Zhu JJ, Jiang J, Yang M, Ren ZJ. ChatGPT and Environmental Research. Environ Sci Technol. Forthcoming 2023. Doi: 10.1021/acs.est.3c01818. DOI: https://doi.org/10.1021/acs.est.3c01818
Zurbriggen C, González-Lago M, Baraibar M, Baethgen W, Mazzeo N, Sierra M. Experimentation in the design of public policies: the Uruguayan soils conservation plans. Iberoam - Nord J Lat Am Caribb Stud. 2020;49(1):52-62. DOI: https://doi.org/10.16993/iberoamericana.459

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Agrociencia Uruguay

This work is licensed under a Creative Commons Attribution 4.0 International License.
Article metrics | |
---|---|
Abstract views | |
Galley vies | |
PDF Views | |
HTML views | |
Other views |