Alternatives for replacing or reducing the content of added sulfites in Tannat red wines elaborated with commercial yeasts or with minimal intervention

Authors

DOI:

https://doi.org/10.31285/AGRO.29.1590

Abstract

Sulfite reduction in wines represents a significant challenge in the current wine industry given its widespread use as an additive and the potential health risks for consumers. This study evaluates alternatives to reduce sulfites in Tannat red wines made with minimal intervention or with selected yeasts, focusing on microbiological stability, color, and physicochemical composition. In the 2023 vintage, vinifications were carried out with native yeasts and selected yeasts using reduced SO2 (SR: 30 mg/L), chitosan (Q: 100 mg/L), combinations of SO2 and chitosan (SR+Q), lysozyme (SR+L: 5 mg/L) (SR+QL), and fumaric acid (SR+AF: 6 mg/L) that were compared with a Control (125 mg/L of sulfites) and a treatment without additives (SA). Microbial counts in minimal intervention wines and those obtained by sulfite substitution or reduction did not show differences during fermentation. The minimal intervention fermentations rates were slower than the treatments with selected yeasts. From the minimal intervention treatments, the SR+Q wines showed higher malic acid content, color intensity, phenolic compounds, anthocyanins, and tannins compared to the other treatments and similar to the Control. On the other hand, the SR+Q wines from the sulfite substitution or reduction trial also presented values ​​of color intensity and polyphenolic and anthocyanin content similar to the Control. Consequently, the combination of reduced doses of sulfites and chitosan seems to be a viable option for producing Tannat wines with characteristics similar to those made with conventional doses of sulfites, at least, when grape soundness is good, as in the vintage analyzed in the present study.

Downloads

Download data is not yet available.

References

Alonso González P, Parga Dans E, Fuentes Fernández R. Certification of natural wine: policy controver-sies and future prospects. Front Sustain Food S. 2022;6:875427. Doi: 10.3389/fsufs.2022.875427. DOI: https://doi.org/10.3389/fsufs.2022.875427

Ayala F, Echávarri JF, Negueruela AI. A new simplified method for measuring the color of wines: I. Red and Rosé Wines. Am J Enol Vitic. 1997;48:357-63. Doi: 10.5344/ajev.1997.48.3.357. DOI: https://doi.org/10.5344/ajev.1997.48.3.357

Ayala F, Echávarri JF, Negueruela AI. MSCVes.zip [Software]. Zaragoza: Universidad de Zaragoza; 2021[cited 2024 Dec 31]. Available from: http://www.unizar.es/negueruela/MSCV.es

Bağder Elmaci S, Gülgör G, Tokatli M, Erten H, İşci A, Özçelik F. Effectiveness of chitosan against wine-related microorganisms. Antonie Van Leeuwenhoek. 2015;107(3):675-86. Doi: 10.1007/s10482-014-0362-6. DOI: https://doi.org/10.1007/s10482-014-0362-6

Bartowsky EJ, Costello PJ, Villa A, Henschke PA. The chemical and sensorial effects of lysozyme addition to red and white wines over six months' cellar storage. Aust J Grape Wine Res. 2004;10(2):143-50. Doi: 10.1111/j.1755-0238.2004.tb00017.x. DOI: https://doi.org/10.1111/j.1755-0238.2004.tb00017.x

Bisson LF. Stuck and sluggish fermentations. Am J Enol Vitic. 1999;50(1):107-19. Doi: 10.5344/ajev.1999.50.1.107. DOI: https://doi.org/10.5344/ajev.1999.50.1.107

Bučková M, Puškárová A, Ženišová K, Kraková L, Piknová Ľ, Kuchta T, Pangallo D. Novel insights into microbial community dynamics during the fermentation of Central European ice wine. Int J Food Microbiol. 2017;266:42-51. Doi: 10.1016/j.ijfoodmicro.2017.11.010. DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.11.010

Costanigro M, Appleby C, Menke SD. The wine headache: consumer perceptions of sulfites and willing-ness to pay for non-sulfited wines. Food Qual Pref. 2014;31:81-9. Doi: 1365-2222.2009.033624. DOI: https://doi.org/10.1016/j.foodqual.2013.08.002

Cuijvers K, Van Den Heuvel S, Varela C, Rullo M, Solomon M, Schmidt S, Borneman A. Alterations in yeast species composition of uninoculated wine ferments by the addition of sulphur dioxide. Fermentation. 2020;6(2):62. Doi: 10.3390/fermentation6020062. DOI: https://doi.org/10.3390/fermentation6020062

Cureau N, Threlfall R, Carbonero F, Howard L, Lavefve L. Fungal diversity and dynamics during grape wine fermentations with different sulfite levels and yeast inoculations. Am J Enol Vitic. 2021;72(3):240-56. Doi: 10.5344/ajev.2021.20054. DOI: https://doi.org/10.5344/ajev.2021.20054

De Revel G, Capela AB, Hogg T. A pre‐spoilage marker for bacterial activity in fortified wine, conversion of L‐malic acid to L‐lactic acid. Lett Appl Microbiol. 1994;18(6):329-32. Doi: 10.1111/j.1472-765X.1994.tb00881.x. DOI: https://doi.org/10.1111/j.1472-765X.1994.tb00881.x

Delfini C, Cersosimo M, Del Prete V, Strano M, Gaetano G, Pagliara A, Ambrò S. Resistance screening essay of wine lactic acid bacteria on lysozyme: efficacy of lysozyme in unclarified grape musts. J Agricul Food Chem. 2004;52(7):1861-6. Doi: 10.1021/jf034824m. DOI: https://doi.org/10.1021/jf034824m

Dias R, Vilas-Boas E, Campos FM, Hogg T, Couto JA. Activity of lysozyme on lactobacillus hilgardii strains isolated from port wine. Food Microbiol. 2015;49:6-11. Doi: 10.1016/j.fm.2015.01.007. DOI: https://doi.org/10.1016/j.fm.2015.01.007

Divol B, du Toit M, Duckitt E. Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Applied Microbiol Biotechnol. 2012;95:601-13. Doi: 10.1007/s00253-012-4186-x. DOI: https://doi.org/10.1007/s00253-012-4186-x

Fleet GH. Wine yeasts for the future. FEMS Yeast Res. 2008;8(7):979-95. Doi: 10.1111/j.1567-1364.2008.00427.x. DOI: https://doi.org/10.1111/j.1567-1364.2008.00427.x

Fuentes-Fernandez R. Finding common ground: the need for cooperation and collaboration in the spanish natural wine industry. Wine Bus Case Res J. 2019;3(1):65-93. DOI: https://doi.org/10.26813/wbcrj/2019.03.01/finding

Galati A, Schifani G, Crescimanno M, Migliore G. “Natural wine” consumers and interest in label infor-mation: An analysis of willingness to pay in a new Italian wine market segment. J Clean Prod. 2019; 227:405-13. Doi: 10.1016/j.jclepro.2019.04.219. DOI: https://doi.org/10.1016/j.jclepro.2019.04.219

Gao Y, Tian Y, Liu D, Li Z, Zhang XX, Li JM, Huang JH, Wang J, Pan QH. Evolution of phenolic compounds and sensory in bottled red wines and their co-development. Food Chem. 2002;172:565-74. Doi: 10.1016/j.foodchem.2014.09.115. DOI: https://doi.org/10.1016/j.foodchem.2014.09.115

Glories Y. La couleur des vins rouges: 2e partie: mesure, origine et interprétation. OENO One. 1984;18(4):253-71. Doi: 10.20870/oeno-one.1984.18.4.1744. DOI: https://doi.org/10.20870/oeno-one.1984.18.4.1744

Glories Y. La couleur des vins rouges: lre partie: les équilibres des anthocyanes et des tanins. OENO One.1984;18(3):195-217. Doi: 10.20870/oeno-one.1984.18.3.1751. DOI: https://doi.org/10.20870/oeno-one.1984.18.3.1751

Gómez-Rivas L, Escudero-Abarca BI, Aguilar-Uscanga MG, Hayward-Jones PM, Mendoza P, Ramírez M. Selective antimicrobial action of chitosan against spoilage yeasts in mixed culture fermentations. J Ind Microbiol Biotechnol. 2004;31(1):16-22. Doi: 10.1007/s10295-004-0112-2. DOI: https://doi.org/10.1007/s10295-004-0112-2

Grangeteau C, Roullier‐Gall C, Rousseaux S, Gougeon RD, Schmitt‐Kopplin P, Alexandre H, Guilloux‐Benatier M. Wine microbiology is driven by vineyard and winery anthropogenic factors. Microbial biotechnol. 2017;10(2):354-70. Doi: 10.1111/1751-7915.12428. DOI: https://doi.org/10.1111/1751-7915.12428

Guerrero RF, Cantos-Villar E. Demonstrating the efficiency of sulphur dioxide replacements in wine: a parameter review. Trends Food Sci Technol. 2015;42(1):27-43. Doi: 10.1016/j.tifs.2014.11.004. DOI: https://doi.org/10.1016/j.tifs.2014.11.004

He F, Liang NN, Mu L, Pan QH, Wang J, Reeves MJ, Duan CQ. Anthocyanins and their variation in red wines: I. Monomeric anthocyanins and their color expression. Molecules. 2012;17(2):1571-601. Doi: 10.3390/molecules17021571. DOI: https://doi.org/10.3390/molecules17021571

He F, Liang NN, Mu L, Pan QH, Wang J, Reeves MJ, Duan CQ. Anthocyanins and their variation in red wines: II. Anthocyanin derived pigments and their color evolution. Molecules. 2012;17:1483-519. Doi: 10.3390/molecules17021483. DOI: https://doi.org/10.3390/molecules17021483

Hu S. Natural Wine: the Conundrum [Internet] 2020 [cited 2024 Dec 31]. 16p. Available from: https://shenglihu.com/research/D6_July2020_Shengli_Hu.pdf

International Organisation of Vine and Wine. International Code of Oenological Practices. Paris: OIV; 2021. 435p.

L'Association des Vins Naturels. Cahier des charges d’un vin AVN [Internet]. 2018 [cited 2024 Dec 31]. Available from: http://avn.vin/category/L-association-Cahier-des-charges

Liang M, Liu R, Qi W, Su R, Yu Y, Wang L, He Z. Interaction between lysozyme and procyanidin: multilevel structural nature and effect of carbohydrates. Food Chem. 2013;138(2-3):1596-603. Doi: 10.1016/j.foodchem.2012.11.027. DOI: https://doi.org/10.1016/j.foodchem.2012.11.027

Lopez I, Santamaria P, Tenorio C, Garijo P, Gutierrez AR, Lopez R. Evaluation of lysozyme to control vinification process and histamine production in Rioja wines. J Microbiol Biotechnol. 2009;19(9):1005-12. Doi: 10.4014/jmb.0811.602. DOI: https://doi.org/10.4014/jmb.0811.602

Mas A, Portillo MC. Strategies for microbiological control of the alcoholic fermentation in wines by exploiting the microbial terroir complexity: a mini-review. Int J Food Microbiol. 2022;367:109592. Doi: 10.1016/j.ijfoodmicro.2022.109592. DOI: https://doi.org/10.1016/j.ijfoodmicro.2022.109592

Morata A, Adell E, López C, Palomero F, Suárez E, Pedrero S, Bañuelos MA, González C. Use of fumaric acid to inhibit malolactic fermentation in bottled rioja wines: effect in pH and volatile acidity control. Beverages. 2023;9:16. Doi: 10.3390/beverages9010016. DOI: https://doi.org/10.3390/beverages9010016

Morata A, Bañuelos MA, López C, Song C, Vejarano R, Loira I, Palomero F, Suarez Lepe JA. Use of fumaric acid to control pH and inhibit malolactic fermentation in wines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2020;37(2):228-38. Doi: 10.1080/19440049.2019.1684574. DOI: https://doi.org/10.1080/19440049.2019.1684574

Morata A, Escott C, Loira I, Del Fresno JM, González C, Suárez-Lepe JA. Influence of Saccharomyces and non-Saccharomyces yeasts in the formation of pyranoanthocyanins and polymeric pigments during red wine making. Molecules. 2019;24:4490. Doi: 10.3390/molecules24244490. DOI: https://doi.org/10.3390/molecules24244490

Navarro Y, Torija MJ, Mas A, Beltran G. Viability-PCR allows monitoring yeast population dynamics in mixed fermentations including viable but non-culturable yeasts. Foods. 2020;9(10):1373. Doi: 10.3390/foods9101373. DOI: https://doi.org/10.3390/foods9101373

Nunes C, Maricato É, Cunha Â, Rocha MA, Santos S, Ferreira P, Silva M, Rodrigues A, Amado O, Coimbra J, Silva D. Chitosan–genipin film, a sustainable methodology for wine preservation. Green Chem. 2016;18(19):5331-41. Doi: 10.1039/C6GC01621A. DOI: https://doi.org/10.1039/C6GC01621A

Payan C. Acidification of musts and wines by fumaric acid: impact of its addition on the chemical and sensory characteristics of varietal wines in the frame of climate change changement climatique [doctoral dissertation]. [place unknown]: Université de Bordeaux; Hochschule Geisenheim University; 2023. 244p.

Picariello L, Errichiello F, Coppola F, Rinaldi A, Moio L, Gambuti A. Effect of chitosan addition on acetaldehyde and polymeric pigments production after oxidation of red wines with different tannin/anthocyanins ratio. Eur Food Res Technol. 2023;249(9):2447-55. Doi: 10.1007/s00217-023-04292-z. DOI: https://doi.org/10.1007/s00217-023-04292-z

Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A. Handbook of enology. Vol. 1, The microbiology of wine and vinifications. New Jersey: John Wiley & Sons; 2006. 497p. DOI: https://doi.org/10.1002/0470010363

Ribéreau-Gayon P, Stonestreet E. Le dosage des anthocyanes dans le vin rouge. Bull Soc Chim Fr. 1965;9:2649-52.

Roldán A, Lasanta C, Caro I, Palacios V. Effect of lysozyme on “flor” velum yeasts in the biological aging of sherry wines. Food Microbiol. 2012;30(1):245-52. Doi: 10.1016/j.fm.2011.10.010. DOI: https://doi.org/10.1016/j.fm.2011.10.010

Santos MC, Nunes C, Saraiva JÁ, Coimbra MA. Chemical and physical methodologies for the replace-ment/reduction of sulfur dioxide use during winemaking: review of their potentialities and limitations. Eur Food Res Technol. 2012,234:1-12. Doi: 10.1007/s00217-011-1614-6. DOI: https://doi.org/10.1007/s00217-011-1614-6

Sarneckis C, Dambergs RG, Jones P, Mercurio MD, Herderich MJ, Smith PA. Quantification of condensed tannins by precipitation with methyl cellulose: development and validation of an optimised tool for grape and wine analysis. Aust J Grape Wine Res. 2006;12:39-49. Doi: 10.1111/j.1755-0238.2006.tb00042.x. DOI: https://doi.org/10.1111/j.1755-0238.2006.tb00042.x

Scientific Opinion on the re-evaluation of sulfur dioxide (E 220), sodium sulfite (E 221), sodium bisulfite (E 222), sodium metabisulfite (E 223), potassium metabisulfite (E 224), calcium sulfite (E 226), calcium bisulfite (E 227) and potassium bisulfite (E 228) as food additives. EFSA J. 2016;14(4):4438. Doi: 10.2903/j.efsa.2016.4438. DOI: https://doi.org/10.2903/j.efsa.2016.4438

Sellers-Rubio R, Nicolau-Gonzalbez JL. Estimating the willingness to pay for a sustainable wine using a heckit model. Wine Econ Policy. 2016;5:96-104. Doi: 10.1016/j.wep.2016.09.002. DOI: https://doi.org/10.1016/j.wep.2016.09.002

Singleton V, Rossi J. Colorimetry of total phenolic compounds with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965;16:144-58. Doi: 10.5344/ajev.1965.16.3.144. DOI: https://doi.org/10.5344/ajev.1965.16.3.144

Valera MJ, Sainz F, Mas A, Torija MJ. Effect of chitosan and SO2 on viability of Acetobacter strains in wine. Int J Food Microbiol. 2017;246:1-4. Doi: 10.1016/j.ijfoodmicro.2017.01.022. DOI: https://doi.org/10.1016/j.ijfoodmicro.2017.01.022

Vally H, Misso NLA, Madan V. Clinical effects of sulphite additives. Clin Exp Allergy. 2009,39:1643-51. Doi: 1365-2222.2009.03362. DOI: https://doi.org/10.1111/j.1365-2222.2009.03362.x

Varela C, Pizarro F, Agosin E. Biomass content governs fermentation rate in nitrogen-deficient wine musts. Appl Environ Microbiol. 2004;70(6):3392-400. Doi: 10.1128/AEM.70.6.3392-3400.2004. DOI: https://doi.org/10.1128/AEM.70.6.3392-3400.2004

Downloads

Published

2025-04-24

How to Cite

1.
Piccardo D, González M, Favre G, Cammarota A, Pereyra F, Olivera J, et al. Alternatives for replacing or reducing the content of added sulfites in Tannat red wines elaborated with commercial yeasts or with minimal intervention. Agrocienc Urug [Internet]. 2025 Apr. 24 [cited 2025 Oct. 17];29(NE1):e1590. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/1590

Issue

Section

Article
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)