Soil sampling depth and phosphorus extraction method for phosphorus in leguminous pastures

Authors

DOI:

https://doi.org/10.31285/AGRO.26.954

Keywords:

Bray I, cationic resin, citric acid, correlation, pastures, soil P test

Abstract

The current guidelines and recommendations for P fertilization in Uruguay can be improved by adjusting the sampling depth and analytical methods of testing soil P in pastures with different fertilization history. A set of field trials was conducted between 2008 and 2012 on 14 sites of Uruguay for the purpose of comparing two sampling depths and three methods for assessing P availability by their correlation with annual dry matter yield response. The trials had a randomized complete block design and were sown with Trifolium repens or Lotus corniculatus. Soil P availability was determined by sampling 0-7.5 and 0-15 cm depth using three analytical methods: Bray I, cationic resins, and citric acid. Rock phosphate and triple superphosphate were applied at five P rates. (0-240 kg kg P2O5 ha-1). Annual forage yield was recorded. Relative yield was calculated as measured yield/maximum yield observed within a block. The correlation between relative yield and soil P availability was studied using the modified arcsine-logarithm calibration curve (ALCC) and analyzing the resulting correlation coefficient, root-mean-square error (RMSE) of the soil P test, and RMSE of the relative yield. The 0-7.5 cm soil sampling depth did not show a better fit than the deeper sampling (0-15 cm), with the latter having less variation in soil P test values. When rock phosphate was used, the correlation coefficients were 0.50 for cationic resins, 0.53 for citric acid, and 0.38 for Bray I. When triple superphosphate was used, the correlation coefficients were 0.37 for cationic resins, 0.44 for citric acid and 0.43 for Bray I. For both P sources, the citric acid method with the sampling of 0-15 cm soil depth is the preferred soil P test method for management of P in leguminous pastures for the soils studied.

Downloads

Download data is not yet available.

References

Adetunji MT. Optimum sample size and sampling depth for soil nutrient analysis of some tropical soils. Commun Soil Sci Plant Anal. 1994;25(3-4):199-205.

Bachmeier A, Rollán A. Fósforo extractable en un suelo Haplustol éntico del área semiárida central de Córdoba, Argentina: comparación de dos métodos de evaluación. AgriScientia. 1994;11:23-8.

Barbagelata P, Melchori R. Fertilización fosfatada para trigo en siembra directa en entre ríos: diagnóstico de fertilidad y estrategias de fertilización. In: Actualización técnica 1: Cultivos de invierno. Paraná: INTA; 2010. p. 71-8.

Barber J, Stanley A. Nutrient Absorption by plant roots. In: Barber J, Stanley A, editor. Soil nutrient bioavailability: a mechanistic approach. Canada: John Wiley and Sons; 1995. p 85-110.

Bolland M, Allen D, Gilkes R. The influence of seasonal conditions, plant species and fertilizer type on the prediction of plant yield using the Cowell bicarbonate soil test for phosphate. Fertil Res. 1989;19:143-58.

Bolland M, Gilkes E. Colwell soil test as predictors of triticale grain production on soil fertilized with superphosphate and rock phosphate. Fertil Res. 1992;31:363-72.

Bordoli M, Mallarino A. Deep and shallow banding of phosphorus and potassium as alternatives to broadcast fertilization for no-till corn. Agron J. 1998;90:27-33.

Bordoli M, Quincke A, Marchesi A. Fertilización fosfatada de trigo en siembra directa. In: Actas del XIX Congreso de la AACS; Paraná, Argentina. [place unknown]: [publisher unknown]; 2004. CD-ROM

Bray R, Kurtz T. Determination of total, organic and available forms of phosphorus in soils. Soil Sci. 1945;59:39-45.

Casanova O, Genta H, Mallarino A. Evaluación del comportamiento de cinco métodos para estimar fosforo asimilable en suelos del Uruguay [grade’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 1975. 55p.

Chang S, Jackson M. Fractionation of soil phosphorus. Soil Sci. 1957;84:133-44.

Chien S, Menon G. Factors affecting the agronomic effectiveness of phosphate rock for direct application. Fert Res. 1995;41:227-34.

Correndo A, Salvagiotti F, García F, Gutiérrez Boem H. A modification of the arcsine-log calibration curve for analyzing soil test value-relative yield relationships. Crop Pasture Sci. 2017;68:297-304.

Correndo A, Salvagiotti F, García F, Gutiérrez Boem H. Modified ALCC Excel Tool v3 [Internet]. 2017 [cited 2022 Feb 15]. Available from: https://bit.ly/3GPhess.

Da Silva FC, van Raij B. Disponibilidade de fósforo em solos avaliada por diferentes extratores. Pesq Agropec Bras. 1999;34(2):267-88.

Del Pino A, Ruiz A. Muestreo de suelo para recomendaciones de fertilización de pasturas convencionales [grade’s thesis]. Montevideo (UY): Universidad de la República, Facultad de Agronomía; 1986. 88p.

Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW. InfoStat [Internet]. Version 2018. Córdoba: Universidad Nacional de Córdoba, Facultad de Ciencias Agropecuarias; 2018 [cited 2022 Feb 15]. Available from: https://bit.ly/3dDvIyu.

Dyer R. On the analytical determination of probable available mineral plant food on soils. J Chem Soc Trans. 1894;65:115-67.

Dyson C, Conyers M. Methodology for online biometric analysis of soil test–crop response datasets. Crop Pasture Sci. 2013;64:435-441.

Evans P. Comparative root morphology of some pasture grasses and clovers. New Zealand J Agric Res. 1978;20:331-5.

Fäth J, Mellert K, Blum U, Göttlein A. Citric acid extraction: an underestimated method in forest nutrition? J Plant Nutr Soil Sci. 2019;182:691-3.

Hernández J, Berger A, Deambrosi E, Lavecchia A. Phosphorus Soil Tests for Flooded Rice Grown in Contrasting Soils and Cropping. Commun Soil Sci Plant Anal. 2013;44:1193-210.

Holanda F, Mengel D, Paula A, Carvhalo J, Bertoni J. Influence of crops rotations and tillage systems on phosphorus and potassium stratification and root distribution in the soil profile. Commun Soil Sci Plant Anal. 1998;29:2383-94.

Humphreys J, Tunney H, Duggan P. Soil phosphorus determination using three extraction procedures, the effect of sampling depth and comparison of phosphorus fertiliser recommendations for grassland. Ir J Agric Food Res. 1998;37(1):29-38.

James D, Wells K. Soil sample collection and handling: technique based on source and degree of field variability. In: Westerman RL, editor. Soil testing and plant analysis. Madison: Soil Science Society of America; 1990. p. 25-44.

Kamprath E, Watson M. Conventional Soil and Tissue Tests for Assessing the Phosphorus Status of Soils. In: Khasawneh FE, Sample EC, Kamprath EJ, editors. The Role of Phosphorus in Agriculture. Madison: ASA; 1980. p 434-69.

Lambers H, Raven J, Shaver G, Smith S. Plant nutrient acquisition strategies change with soil age. Trends Ecol Evol. 2008;23:95-103.

Legendre P, Legendre L. Interpretation of ecological structures. In: Numerical ecology. 2nd ed. Amsterdam: Elsevier; 1998. p. 497-545.

Lodge G, Murphy S. Root depth of native and sown perennial grass-based pastures, North-West Slopes, New South Wales: 1. Estimates from cores and effects of grazing treatments. Austr J Exp Agric. 2006;46(3):337-45.

Mallarino A. Field calibration for corn of the Mehlich-3 soil phosphorus test with colorimetric and inductively-coupled plasma emission spectroscopy determination methods. Soil Sci Soc Am J. 2003;67:1928-34.

Mallarino A. Spatial variability patterns of phosphorus and potassium in no-tilled soils for two sampling scales. Soil Sci Soc Am J. 1996;60:1473-81.

Mallarino A, Atia A. Correlation of a resin membrane soil phosphorus test with corn yield and routine soil tests. Soil Sci Soc Am J. 2005;69(1):266-72.

Mallarino A, Borges R. Phosphorus and Potassium Distribution in Soil Following Long-Term Deep-Band Fertilization in Different Tillage Systems. Soil Sci Soc Am J. 2006;70:702-7.

Marino M, Echeverría H. Diagnóstico de requerimiento de fósforo para alfalfa (Medicago sativa L.) en argiudoles. Agriscientia. 2018;35(1):11-24.

Morón A. El fósforo en el sistema suelo-planta. Rev INIA. 1992;1(1):45-60.

Morón A. Relevamiento del estado nutricional y la fertilidad del suelo en cultivos de trébol blanco en la zona Este de Uruguay. In: Seminario de Actualización Técnica: fertilización fosfatada de pasturas en la región este. Treinta y Tres: INIA; 2004. p. 17-31. (Actividades de Difusión; 356).

Murphy WE, Culleton N. Distribution of available phosphorus in soil under long term grassland. In: Tunney H, Carton OT, Brookes PC, Johnston AE, editors. Phosphorus Loss from Soil to Water. Wallingford: CAB International Publications; 1997. p. 448-9.

Neumann G, Römheld V. The Release of Root Exudates as Affected by the Plant Physiological Status. In: Pinton R, Varanini Z, Nannipieri P, editors. The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. Boca Raton: CRC Press; 2007. p. 23-72.

Owens P, Deeks L, Wood G, Betson E, Lord E, Davison P. Variations in the depth distribution of phosphorus in soil profiles and implications for model-based catchment-scale predictions of phosphorus delivery to surface waters. J Hydrol. 2008;350(3-4):317-28.

Pothuluri J, Kissel D, Whitney D, Thien S. Phosphorus Uptake from Soil Layers Having Different Soil Test Phosphorus Levels. Agron J. 1986;78(6):991-4.

Risso D, Cuadro R, Morón A. Respuesta de un mejoramiento de campo a estrategias de fertilización fosfatada sobre un suelo de basalto. In: Alternativas tecnológicas para los sistemas ganaderos del basalto. Montevideo: INIA; 2014. p. 35-53. (Serie Técnica; 217).

Robbins S, Voss R. Phosphorus and potassium stratification in conservation tillage systems. J Soil Water Conserv. 1991;46(4):298-300.

Saggar S, Hedley MJ, White RE, Perrott KW, Gregg PEH, Cornforth IS, Sinclair AG. Development and evaluation of an improved soil test for phosphorus, 3: field comparison of Olsen, Colwell and Resin soil P tests for New Zealand pasture soils. Nutr Cycl Agroecosyst. 1999;55:35-50.

Schlindwein J, Bortolon L, Fioreli E, Oliverira E, Gianello C. Phosphorus and potassium fertilization in no till southern Brazilian soils. J Agric Sci. 2013;4(12):39-49.

Shigaki F, Sharpley A. Phosphorus source and soil proprieties effects on phosphorus availability. Soil Sci. 2011;176(9):502-7.

Simard R, Sen Tran T, Zizka J. Strontium Chloride-Citric Acid Extraction Evaluated as a Soil-Testing Procedure for Phosphorus. Soil Sci Soc Am J. 1991;55:414-21.

Stewart J, Tiessen H. Dynamics of soil organic phosphorus. Biogeochemistry. 1987;4:41-60.

Webster R. Regression and functional relations. Eur J Soil Sci. 1997;48:557-66.

Zamuner E, Picone L, Echeverria H. Comparison of phosphorus fertilization diagnostic methods for wheat under no-tillage. Soil Tillage Res. 2006;89(1):70-7.

Zamuz E, Castro L. Evaluación de métodos de análisis de suelo para determinar fósforo asimilable. Boletín Técnico (CIAAB). 1974;(15):15p.

Published

2022-03-02

How to Cite

1.
Cuadro R, Cadenazzi M, Quincke JA. Soil sampling depth and phosphorus extraction method for phosphorus in leguminous pastures. Agrocienc Urug [Internet]. 2022 Mar. 2 [cited 2024 Mar. 28];26(1):e954. Available from: https://agrocienciauruguay.uy/index.php/agrociencia/article/view/954

Issue

Section

Natural and environmental resources
QR Code

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views

Most read articles by the same author(s)

1 2 > >>