Agrociencia
Uruguay
Universidad de la República, Uruguay
ISSN-e: 2730-5066
vol. 26, no.
2, e1056, 2022
agrociencia@fagro.edu.uy
Review
Review on ecological interactions of the Cochliomyia hominivorax fly and assessment of the possible impacts
of its eradication in Uruguay
Revisión de las
interacciones ecológicas de la mosca Cochliomyia hominivorax y evaluación de
los posibles impactos ecológicos de su erradicación en Uruguay
Revisão das interações ecológicas da mosca Cochliomyia
hominivorax e avaliação dos possíveis impactos
ecológicos de sua erradicação no Uruguai
Ismael Etchevers
Independent researcher, Rocha,
Uruguay
https://orcid.org/0000-0002-1765-1948
María Victoria Iriarte
Ministerio de Ganadería, Agricultura y
Pesca (MGAP), Dirección General de Servicios Ganaderos (DGSG), Montevideo,
Uruguay
https://orcid.org/0000-0001-5527-2503
Laura Marques
Ministerio de Ganadería, Agricultura y
Pesca (MGAP), Dirección General de Servicios Ganaderos (DGSG), Montevideo,
Uruguay
https://orcid.org/0000-0003-4745-7887
Alejandra Ferenczi
Ministerio de Ganadería, Agricultura y
Pesca (MGAP), Dirección General de Bioseguridad e Inocuidad Alimentaria
(DIGEBIA), Área de Bioseguridad, Montevideo, Uruguay
https://orcid.org/0000-0002-1424-0940
Marco Dalla Rizza
Instituto Nacional de Investigación
Agropecuaria (INIA), Unidad de Biotecnología, Canelones, Uruguay
https://orcid.org/0000-0003-4065-0940
Jorge Marzaroli
Advisor on public policies for rural development with an ecosystem
approach, Montevideo, Uruguay
https://orcid.org/0000-0003-1995-4659
Alejandro Saravia
Instituto Plan Agropecuario (IPA), Montevideo,
Uruguay
https://orcid.org/0000-0002-2052-6435
Pablo Fresia
Unidad Mixta Pasteur + INIA (UMPI), Institut
Pasteur de Montevideo, Montevideo, Uruguay
Received: 12 May 2022
Accepted: 19 July
2022
Published: 16 September 2022
Corresponding
author: ismaelec@gmail.com
This
work is licensed under Creative Commons Attribution 4.0 International.
Abstract:
Controlling a pest species raises
questions about the harmful effects its eradication could cause in ecosystems.
Currently, in Uruguay are being analyzed strategies to eradicate the New World
Screwworm (NWS), Cochliomyia hominivorax (Diptera: Calliphoridae), an obligatory
ectoparasite that causes myiasis in warm-blooded vertebrates, including humans.
The loss of a species implies a risk of secondary extinctions and cascading
effects that depend on the ecological function of the species and the capacity
of the rest of the species with which it interacts to compensate for its loss.
To assess the ecological impact of the NWS eradication, we analyzed its
ecological redundancy, its effect as an indirect regulatory agent for other
species, and its participation in critical ecosystem functions. We conclude
that the NWS presents high functional redundancy in most ecological
interactions. It does not play an essential role as a regulatory agent of other
species and does not play an important role in critical ecosystem functions.
Without ignoring the information gaps that certainly exist about the ecological
interactions network of the NWS in Uruguay, we estimate that its eradication is
unlikely to cause secondary extinctions or cascading effects in the networks it
integrates. In order to timely detect possible impacts during the course of the
program, it is recommended to monitor the ecosystems using indicators related
to direct and indirect partners in the ecological interactions of the NWS.
Keywords:
Cochliomyia hominivorax, eradication, ecological impact, ecological interactions, functional
redundancy.
Resumen: El
control de una especie plaga genera interrogantes sobre los efectos nocivos que
su erradicación podría causar en los ecosistemas. Actualmente, en Uruguay se
analizan estrategias para erradicar la mosca de la bichera (MB), Cochliomyia hominivorax (Diptera: Calliphoridae), un
ectoparásito obligatorio que causa miasis en vertebrados de sangre caliente,
incluidos los humanos. La pérdida de una especie supone un riesgo de
extinciones secundarias y efectos en cascada que dependen de la función
ecológica de la especie que se pierde y la capacidad del resto de las especies
con las que interactúa para compensar su pérdida. Para evaluar el impacto
ecológico de la erradicación de la MB analizamos su redundancia ecológica, su
efecto como agente regulador indirecto de otras especies y su participación en
funciones críticas de los ecosistemas. Concluimos que la MB presenta alta
redundancia funcional en la mayoría de sus interacciones ecológicas, no juega
un papel importante como agente regulador de otras especies y no juega un papel
importante en funciones ecosistémicas críticas. Sin desconocer los vacíos de
información que ciertamente existen sobre la red de interacciones ecológicas de
la MB en Uruguay, estimamos que es poco probable que su erradicación cause
extinciones secundarias o efectos en cascada en las redes de interacciones
ecológicas que integra. A fin de detectar oportunamente eventuales impactos
durante el curso del programa, se recomienda monitorear los ecosistemas
utilizando indicadores relacionados con socios directos e indirectos en las
interacciones ecológicas de la MB.
Palabras clave: Cochliomyia hominivorax, erradicación, impacto
ecológico, interacciones ecológicas, redundancia funcional.
Resumo:
O controle de uma espécie praga levanta
questões sobre os efeitos nocivos que a erradicação pode causar nos
ecossistemas. Atualmente, no Uruguai estão sendo analisadas estratégias de
controle para erradicar a mosca da bicheira (MB), Cochliomyia hominivorax (Diptera: Calliphoridae), um ectoparasita obrigatório que causa miíase em vertebrados de sangue quente, incluindo o homem.
A perda de uma espécie implica um risco de extinções secundárias e efeitos em
cascata que dependem da função ecológica da espécie que se perde e da
capacidade do resto das espécies com as quais interage para compensar a sua
perda. Para avaliar o impacto ecológico da erradicação da MB, analisamos sua
redundância ecológica, seu efeito como agente regulador indireto para outras
espécies e sua participação em funções críticas do ecossistema. Concluímos que
a MB apresenta alta redundância funcional na maioria de suas interações
ecológicas, não desempenha um papel importante como agente regulador de outras
espécies e não desempenha um papel importante em funções críticas do
ecossistema. Sem ignorar as lacunas de informação que certamente existem sobre
a rede de interações ecológicas do NWS no Uruguai, estimamos que é improvável
que sua erradicação cause extinções secundárias ou efeitos em cascata nas redes
de interações ecológicas que integra. Para detectar oportunamente possíveis
impactos durante o curso do programa, recomenda-se monitorar os ecossistemas
usando indicadores relacionados a parceiros diretos e indiretos nas interações
ecológicas da MB.
Palavras-chave:
Cochliomyia hominivorax, erradicação, impacto ecológico,
interações ecológicas, redundância funcional.
1. Introduction
The eradication of a
pest raises questions about the species role in the environments it inhabits,
its ecological interactions network and, ultimately, what harmful effects the
control program could cause on the ecosystems. Currently, the eradication of
the New World Screwworm (NWS) fly(1), Cochliomyia hominivorax (Diptera: Calliphoridae),
an obligatory ectoparasite that causes myiasis in warm-blooded vertebrates,
including humans(2), is being discussed in Uruguay. The economic losses due to myiasis for
the Uruguayan livestock sector were evaluated through different strategies, and
estimated as USD 40-45 million per year(1). In addition, more than 800 human cases
annually, mainly among the rural population, are projected based on
epidemiological data from the National Livestock Services (DGSG, MGAP)(3)(4)(5). However, an underreporting of human
cases is estimated due to the myiasis stigmatizing effect.
The NWS has been
eradicated from North and Central America through a Wide Area Integrated Pest
Management (WA-IPM) program that integrated the Sterile Insect Technique as its
main tool, since 1957, when the control program began in the USA(6)(7)(8). Since 2004, a permanent barrier to
releasing of sterile insects has been maintained in the Darién region, on the
border between Panama and Colombia, to prevent its reintroduction(7). To our knowledge, no reports of
negative impacts of NWS eradication programs on ecosystems or other species
have ever been published.
Living organisms
interact within the species level and between species in their community
through complex networks. The loss of a species in a community can lead to
secondary extinctions or cascading effects through its ecological interactions(9)(10). The role of the lost species and the
capacity of the remaining species with which it interacts to compensate for its
loss are essential for the ecosystem functioning, determining the magnitude of
the secondary effects in the ecological community(10)(11)(12).
A preliminary risk
analysis of the environmental impact of an NWS fly eradication program in
Uruguay indicated that it would not result in significant alterations on
ecosystems and ecological interactions(1). As a complement, in this paper we
describe the ecological interactions network that the NWS integrates, and
assess whether secondary extinctions or cascading effects are likely to occur
as a consequence of NWS eradication in Uruguay. Here, we summarize the main
results related to the ecological impact of the eradication of the NWS obtained
in a consultancy contracted by the IPA (Instituto Plan Agropecuario)
and the MGAP (Ministry of Livestock), carried out during 2021 for the social
and environmental impact assessment of the eradication program.
2. Ecological interactions
Scientific literature
research was carried out to identify the direct ecological interactions of the
NWS fly, which yielded a total of 274 documents, of which 79 were included here
due to their relevance in describing the main ecological interactions (see the
complete list of documents in Supplementary Material).
2.1 Parasitism
The NWS fly is an
obligatory ectoparasite of warm-blooded vertebrates because it feeds on living
tissues (i. e. myiasis) in its larval stages. The NWS
develops its life cycle in an extensive list of hosts, including humans(3)(4)(5)(6). Domestic hosts include all animals of production and companion(2). Myiasis is more frequently described
among wild hosts in zoos, and even today, there are few reports in wild animals(13). Some of the wild animals in which
myiasis has been recorded are the Texas opossum (Didelphis
virginiana texensis [Didelphimorphia:
Didelphidae])(14),
the water buffalo (Bubalus bubalis [Artiodactyla: Bovidae])(15), the
white-tailed deer (Odocoileus virginianus [Artiodactyla: Cervidae])(14)(16),
the key pygmy deer (O. virginianus
clavium)(17),
the pampas deer (Ozotoceros bezoarticus [Artiodactyla: Cervidae])(18),
the fallow deer (Dama dama [Artiodactyla:
Cervidae])(17), the wild boar (Sus
scrofa [Artiodactyla: Suidae])(19)(20)(21),
the capybara (Hydrochoerus hydrochaeris [Rodentia: Caviidae])(22),
the maned wolf (Chrysocyon brachyurus [Carnivora:
Canidae])(13), the ocelot (Leopardus pardalis
[Carnivora: Felidae])(23), the jaguar (Panthera
onca [Carnivora: Felidae])(24),
the lesser grison (Galictis cuja
[Carnivora: Mustelidae])(25), and the rhea (Rhea
americana [Struthioniformes: Rheidae])(18).
Also, C.hominivorax
parasites have been described, such as the Trichotrombidium muscarum mite (Acari: Prostigmata), mainly affecting
adults(26). This parasite feeds on the hemolymph
of its hosts and probably on their eggs(27).
The micro-hymenoptera parasitoid wasps Aphaereta laeviuscula (Hymenoptera: Braconidae) and Nasonia vitripennis (Hymenoptera: Pteromalidae)
were recorded parasitizing C. hominivorax pupae(28).
In addition, the hymenopterans wasps of the Superfamily Chalcidoidea (Insecta: Hymenoptera) were also identified in its pupae(29). Finally, the fungus Aspergillus flavus (Fungi: Ascomycota) has been detected
in C. hominivorax
pupae(29).
2.2 Predation
In its adult phase,
some identified predators of C. hominivorax are the spiders Nephila
clavipes, Eriophora ravilla, Neoscona oaxacensis
(Araneae: Araneidae), Leucauge
spp. (Araneae: Tetragnathidae)(30),
and spiders of the Family Zoridae (Araneae: Lycosoidea)(29). Nephila clavipes has been recorded in Uruguay(31).
Others species were identified as predators of immature phases of C. hominivorax
life cycle, such as Chrysomya albiceps (Diptera: Calliphoridae)(32).
However, the possible control that it can exert over C.
hominivorax is low since
it also can damage intact tissues, and its association causes more harm than benefits(32). The ant species Labidus sp., Nomamyrmex sp., Solenopsis sp. and Dolichoderus sp. (Insecta:
Hymenoptera) may attack C. hominivorax larvae once they leave the host(29)(33). Also, most beetles of the Family Staphylinidae are predators of living carrion insects(34). Usually, animals with myiasis hide for
several days before death, and larvae wander between 0.5 and no more than 2
meters from where they land. If they mature on the dead, they are primarily
found on the ground below the carcass(33).
The pupae, therefore, tend to appear in aggregations associated with those of
carrion flies. Likely many mortality factors operate against prepupae and pupae
in soils, including predation by beetles and other insects; however, they play
a minor role in limiting the number of flies that develop around carrion(33). According to Little(35)
larvae of several species of this Family (Staphylinidae)
living in sympatry with adults are predators of pupae and larvae of Diptera, while
others live in colonies of ants and termites. Most species feed on Diptera
larvae in their adult phase, on tetrapod corpses. In general, they are
considered beneficial insects(34).
2.3 Commensalism
The NWS fly presents
commensalism interactions, in some cases as commensal, and in others in the
role of host. As a commensal, it interacts with species that generate skin or
mucosal lesions, attracting and facilitating the oviposition and development of
C. hominivorax
larvae. Most important species are ticks (Arachnida: Ixodidae), such as Rhipicephalus microplus(36), Rhipicephalus sanguineus(37), Amblyomma
maculatum(14)(38)(39), A. aureolatum,
A. dubitatum, A. tigrinum
and A. triste(37)(39)(40),
and Ixodes aragaoi(37)(41).
However, A. aureolatum, A. dubitatum, A. tigrinum, A. triste
and I. aragaoi
do not usually cause severe enough lesions that facilitate the infestation by C. hominivorax
larvae (2021 conversation with Tatiana Saporiti;
unreferenced). Other lesion-causing species that facilitate NWS infestation are
the head louse (Pediculus humanus
capitis [Phthiraptera: Pediculidae])(42),
the human botfly (Dermatobia hominis [Diptera: Oestridae])(42)(43)(44)
and the ship botfly (Oestrus ovis [Diptera: Oestridae])(45). Although C.
hominivorax and D. hominis are primary
myiasis-causing flies, they do not compete for resources, since their
oviposition strategies are highly different.
On the other hand,
the NWS fly also interacts with blowflies (Diptera: Calliphoridae)
such as Cochliomyia macellaria.(46)(47)(48)(49), Chrysomya albiceps(32)(42), Chrysomya rufifacies(50), Lucilia cuprina(51)(52)(53), Lucilia eximia(51)(52)
and Lucilia sericata(51)(54).
These other species of Diptera are fundamentally necrophagous, and when present
in myiasis, they feed on the necrosed tissues generated. In northern Uruguay,
70.8% of myiasis showed other species of Diptera(55).
Finally, in Libya in
1991, C. hominivorax
adults were found infested with the cosmopolitan phoretic mite Macrocheles muscaedomesticae. This mite
does not have an affinity for any particular host. It is likely that during the
SIT program in Libya, the exposure to M. muscaedomesticae occurred due to the feeding
behavior of the NWS fly. Calliphoridae feeds on
animal feces to reach ovary maturation when carrion is not available(27).
2.4 Mutualism
An often unrecognized
but crucial ecological role of some Calliphoridae is
pollination(56)(57)(58)(59)(60)(61). The NWS fly adults feed on flower
nectar, which is vitally important for their survival, ovary maturation and
reproductive success, due to which they could play a role as pollinators(60).
However, abundance studies carried out in various regions using different types
of rotten animal and plant baits indicated that the NWS has very low abundances
concerning other nectarivorous Calliphoridae,
such as C. macellaria and Chrysomya sp.(62)(63)(64)(65),
which is expected due to the high resources' availability for necrophagous
calliphorids and the bias introduced by the baited traps used. Despite of that it
should be noted that rotten liver baits are commonly used in surveys of NWS adults(14)(66). Therefore, the overall contribution of
the NWS fly as a pollinator is low relative to that of the other calliphorids
with which it cohabits.
Facilitation between
Diptera that causes obligatory myiasis is another mutualistic interaction.
Wound infestation by NWS larvae does not exclude other species; on the
contrary, it highly facilitates its presence and vice versa. Several
myiasis-causing species inhabit in Uruguay, such as Chrysomya megacephala,
Chrysomya rufifacies
and Lucilia sericata(67). But as the parasitism of these species
is facultative and, instead, they develop mainly on carrion, the benefit of the
interaction with C. hominivorax as a substrate provider is negligible.
2.5 Competition
No competitive
interactions were identified between the NWS fly adult phase and other species,
since it is a generalist (i. e., nectar, pollen and
floral molasses), and food is not a limiting factor. Also, as mentioned before,
the NWS fly myiasis does not generate competitive interactions.
In order to
investigate the substitution or the increase of myiasis cases by other Calliphoridae after the eradication of C. hominivorax
in Panama, larvae found in myiasis cases were taxonomically classified during
the first years of the eradication program (1998-2005)(68).
Six species were identified: Dermatobia hominis (58%), Lucilia
spp. (20%), C. macellaria
(19%), C. rufifacies
(0.4%), as well as larvae of Sarcophagidae (3%) and Muscidae (0.3%). The authors concluded that the absence of C. hominivorax
did not increase myiasis caused by other species, supporting the hypothesis
that there are no strong competitive interactions between C.
hominivorax and the other
species in Panama.
3. Impact of the eradication of the NWS fly on biodiversity
The gradual reduction
of NWS fly populations until its eradication in Uruguay can impact the species
and ecosystems on the national scale. However, in regions where the Sterile
Insect Technique has been applied to control the NWS fly, local eradication
usually occurs in less than one year. Nevertheless, it usually takes several
years to achieve eradication in the entire region.
Figure 1
Conceptual synthesis of the NWS fly ecological
interactions network obtained from literature review. Strong effects are those
that may play an important role in regulating the interaction partner of a
species. The images contain representative examples of assemblages of species
that interact with the NWS fly. a:Cochliomyia hominivorax;
b: pollinated plants (Allium cepa); c: domestic hosts (Ovis orientalis
aries); d: wild hosts (Ozotoceros
bezoarticus); e: ectoparasites that facilitate
myiasis (Rhipicephalus sanguineus); f-i: parasitoids and predators; f: parasitoid microhymenoptera (Nasonia vitripennis); g: predatory staphylinid
beetles (Atheta coriaria);
h: predatory ants (Solenopsis invicta);
i: predatory spiders (Nephila clavipes); j: commensal
and mutualistic dipterans (Chrysomya albiceps); k: decomposing tetrapod animals (Sus scrofa
domestica).
Credits: a: Judy Gallagher (Wikimedia Commons) CC BY 2.0; b: pixy.org CCO; c: UBcontributor (Wikimedia Commons) CC BY-SA 4.0; d: Fedaro (Wikimedia Commons) CC BY-SA
4.0; e: Wikimedia Commons
Public Domain Marck; f: United States Department of Agriculture (Wikimedia Commons)
Public Domain Marck; g: Udo Schmidt (Flickr) CC BY-SA 2.0; h: Stephen Ausmus (Wikimedia Commons) Public Domain Marck; i: Ismael Etchevers; j: Hectonichus
(Wikimedia Commons) CC BY-SA 4.0; k: Hbreton19 (Wikimedia Commons) CC BY-SA 3.0. All images were
cropped
The eradication of a
species implies a risk of secondary extinctions and cascading effects which
magnitude depends on the ecological role of the species that is lost and the capacity
of the rest of the species with which it interacts to compensate for its loss(10)(11)(12).
The potential effects of NWS loss, its ecological redundancy with other
species, its effect as an indirect regulatory agent of other species, and its
participation in critical ecosystem functions are analyzed below. In Figure 1, we present a conceptual synthesis of the network of ecological
interactions of NWS described earlier in this work.
The NWS coexists with
other species with similar ecological roles as prey and pollinator, presenting
a high functional redundancy in the communities with which it interacts(10)(11). This determines a high capacity of
ecological communities to compensate for its loss. The strength of the
interactions that provide redundancy determines the stability of communities in
the face of the disappearance of a species(68).
The NWS is one of the calliphorid species with the lowest densities throughout
its range(62)(63)(64)(65). Other calliphorid species that cohabit
with the NWS have similar roles as pollinators, prey, and hosts for parasitoids
and phoronts, and exhibit stronger ecological
interactions with partners in these interactions due to their higher densities.
This set of characteristics determines a high functional redundancy in the
interactions of the NWS.
Although the loss of
carnivorous parasites can lead to secondary extinctions of other parasites or carnivores(69), the effect of NWS as an indirect
regulatory agent of other species through its role as a parasite is neutral.
When a parasite exploits and regulates the populations of a particular host
type, it can lead to the excessive proliferation of its host relative to other
species with which it competes(69).
The increase in the populations of its host causes the competitive exclusion of
species in the latter's trophic level, leading to they becoming rare(69). Consequently, the populations of other
secondary consumers, parasites or carnivores, which exclusively exploit the
species affected by competitive exclusion due to the lack of prey, are also reduced(69). However, for this process to occur and
cause secondary extinctions, the initially lost parasite must exploit more
different resources than the other species of secondary consumers. NWS
parasitizes mainly medium and large herbivorous, carnivorous and omnivorous
mammals, and to a lesser extent small mammals and birds, but does not show
preferences for any particular host. The species competing with the main NWS
hosts are other NWS hosts. Therefore, the effect of this parasite as a
regulatory agent of competitive exclusion in its lower trophic levels is
neutral, and its loss could not cause secondary extinctions derived from this
phenomenon.
The MB does not have
essential participation in critical functions of the ecosystems. Brody and others(11) identified a group of critical
functions for the prevention of secondary extinctions and the maintenance of
the structure, biogeochemical processes and resilience of ecosystems. Such
critical functions are seed dispersal, predation, disease buffering, phosphorus
transport, pollination, engineer species, and foundation species(11).
The NWS has a role in the critical function of pollination; however, its
contribution is limited or insignificant compared to that of other much more
abundant calliphorids in its range that perform the same function. No other
critical function is recognized in which the NWS could play an important role.
4. Conclusions and future insights
It is estimated that
the NWS presents a high functional redundancy in most of its ecological
interactions. Furthermore, it does not play an important role as a regulatory
agent of other species and neither in critical ecosystem functions. Therefore,
its eradication is unlikely to cause secondary extinctions or cascading effects
in the networks of ecological interactions it integrates.
The accuracy of the
potential impact assessment of the NWS eradication is limited by the
information gaps that certainly exist on its ecological interactions network in
Uruguay. In addition, there is a lack of monitoring data or specific research
on the effects of NWS eradication in countries where such programs have already
been implemented. Therefore, to opportunely detect possible impacts during the
course of the program, it is recommended to monitor the ecosystems with a high
spatial and temporal resolution, using indicators related to direct and
indirect partners in the ecological interactions of the NWS.
References
1. Fresia P, Pimentel S, Iriarte
V, Marques L, Durán V, Saravia A, Novas R, Basika T, Ferenczi A, Castells D, Saporiti
T, Cuore U, Losiewicz S, Fernández F, Ciappesoni G, Dalla-Rizza M, Menchaca
A. Historical perspective and new avenues to control the myiasis-causing fly Cochliomyia hominivorax in Uruguay. Agrocienc
Urug. 2021;25(2):e974. doi:10.31285/AGRO.25.974
2. Guimarães J, Papavero
N, do Prado A. As miíases na região
neotropical (identificação, biologia,
bibliografia). Rev bras zool. 1983;1:239416.
3. Basmadjián
Y, González Arias M, Galiana A, Palma L, González Curbelo M, Acosta G, Rosa R, Gezuele E. Primera notificación de miasis amigdalina humana
por Cochliomyia hominivorax (Coquerel, 1858) en Uruguay. In: VIII Jornadas de Zoología
del Uruguay [Internet]. Montevideo: Sociedad Zoologica
del Uruguay; 2005 [cited 2022 Aug
19]. p. 37. Available from:
https://bit.ly/3H6bWKj.
4. González Arias M,
Romero S, González M, Galiana A, Basmadjián Y. Miasis
en niños hospitalizados en el Centro Hospitalario Pereira Rossell, Uruguay,
2001-2004. In: XIX Congreso Latinoamericano de Parasitología: libro de
resúmenes [Internet]. [place unknown]: Sociedad
Científica del Paraguay; 2009 [cited 2022 Aug 19]. p. 257.
5. Manchini
T, Fulgueiras P, Fente A.
Miasis oral: a propósito de un caso. Odontoestomatologia. 2009;11(12):38-43.
6. Hall M, Wall R. Myiasis of human and domestic animals. Adv Parasitol. 1995;35:256-333.
7. Vargas-Terán M, Spradbery
JP, Hofmann HC, Tweddle NE. Impact of screwworm eradication programmes
using the sterile insect technique. In: Dyck VA, Hendrichs
J, Robinson AS, editors. Sterile insect technique: principles and practice in
area-wide integrated pest management. 2nd ed. Boca Raton: CRC Press; 2021. p.
949-78.
8. Klassen W, Curtis C. History of the Sterile Insect Technique. In:
Dyck V, Hendrichs J, Robinson A, eds. Sterile insect
technique: principles and practice in area-wide integrated pest management.
Boca Raton: CRC Press; 2005. p. 3-36.
9. Petchey OL, Eklöf A, Borrvall
C, Ebenman B. Trophically
unique species are vulnerable to cascading extinction. Am Nat. 2008;171(5):568-79.
doi:10.1086/587068.
10. Kehoe R, Frago E, Sanders D. Cascading
extinctions as a hidden driver of insect decline. Ecol
Entomol. 2021;46(4):743-56. doi:10.1111/EEN.12985.
11. Brodie JF, Redford KH, Doak DF. Ecological
function analysis: incorporating species roles into conservation. Trends Ecol Evol. 2018;33(11):840-50. doi:10.1016/j.tree.2018.08.013.
12. Sanders D, Thébault E, Kehoe R, van Veen
FJ. Trophic redundancy reduces vulnerability to extinction cascades. Proc Natl
Acad Sci U S A.
2018;115(10):2419-24. doi:10.1073/pnas.1716825115.
13. Cansi ER, Bonorino
R, Mustafa VS, Guedes KMR. Multiple parasitism in wild maned wolf (Chrysocyon
brachyurus, Mammalia: Canidae) in Central
Brazil. Comp Clin Path. 2012;21(4):489-93. doi:10.1007/s00580-012-1513-7.
14. Spradbery P. Screwworm fly: a tale of two
species. Agricultural Zoology Reviews. 1994;6:1-42.
15. Abdallah SI, Rocha UF, Serra OP, Oba MS, Serra RG. Miíase primária em búfalos--Bubalos
bubalis L., 1758--do Estado de São Paulo, Brasil, por Cochliomyia hominivorax (Coquerel, 1858),
Diptera Calliphoridae [Prymary
myiasis in buffaloes--Bufalos bubais
L., 1758--of the state of São Paulo, Brazil, by Cochliomyia
hominivorax (Coquerel,
1858), Diptera Calliphoridae]. Rev Farm Bioquim Univ Sao Paulo. 1970;8(1):135-8.
16. Reichard RE. Area-wide biological control of disease vectors and
agents affecting wildlife. Rev Sci Tech. 2002;21(1):179-85.
doi:10.20506/rst.21.1.1325.
17. USDA. Biological Assessment for a New World Screwworm Eradication
Program in South Florida. Washington: USDA; 2017. 26p.
18. Cansi ER. Caracterização das miíases em animais nas cidades de Brasília (Distrito
Federal) e Formosa (Goiás) [doctoral’s thesis]. Brasília (BR): Universidade de Brasília; 2011.
120p.
19. Altuna M, Hickner
PV, Castro G, Mirazo S, Pérez de León AA, Arp AP. New World screwworm (Cochliomyia
hominivorax) myiasis in feral swine of Uruguay: One
Health and transboundary disease implications. Parasit
Vectors. 2021;14(1):26. doi:10.1186/s13071-020-04499-z.
20. Brown VR, Bowen RA, Bosco-Lauth AM.
Zoonotic pathogens from feral swine that pose a significant threat to public
health. Transbound Emerg
Dis. 2018;65(3):649-59. doi:10.1111/tbed.12820.
21. Risch DR, Ringma
J, Price MR. The global impact of wild pigs (Sus scrofa) on terrestrial
biodiversity. Sci Rep. 2021;11(1):13256. doi:10.1038/s41598-021-92691-1.
22. Wendt LW. Fauna parasitária de capivaras (Hydrochoerus hydrochaeris Linnaeus, 1766)
em sistema de criação semi-intensivo, na região sul do Rio Grande do Sul [master’s thesis]. Pelotas (BR): Universidade Federal de Pelotas; 2009. 54p.
23. Pulgar E, Quijada J,
Bethencourt A, de Román EM. Reporte de un caso de miasis por Cochliomyia hominivorax (Coquerel, 1858) (Diptera: Calliphoridae) en un cunaguaro (Leopardus
pardalis, Linnaeus, 1758)
en cautiverio tratado con Doramectina. Entomotropica.
2009;24(3):129-33.
24. May-Junior JA, Fagundes-Moreira R, Souza VB, Almeida BA, Haberfeld MB, Sartorelo LR, Ranpim LE, Fragoso CE, Soares JF. Dermatobiosis
in Panthera onca: first description and multinomial logistic regression to
estimate and predict parasitism in captured wild animals. Rev Bras
Parasitol Vet. 2021;30(1):e023820.
doi:10.1590/S1984-29612021003.
25. Figueiredo MAP, Santos ACG, Guerra R de MSNC. Ectoparasitos de
animais silvestres no Maranhão. Pesqui Vet Bras. 2010;30(11):988-90. doi:10.1590/s0100-736x2010001100013.
26. Felska M, Wohltmann
A, Makol J. A synopsis of host-parasite associations
between Trombidioidea (Trombidiformes:
Prostigmata, Parasitengona) and arthropod hosts. Syst
Appl Acarol. 2018;23(7):1375-479.
doi:10.11158/saa.23.7.14.
27. McGarry JW, Gusbi AM, Baker A, Hall MJ, El
Megademi K. Phoretic and parasitic mites infesting
the New World screwworm fly, Cochliomyia hominivorax, following sterile insect releases in Libya. Med Vet Entomol. 1992;6(3):255-60.
doi:10.1111/j.1365-2915.1992.tb00615.x.
28. Rodrigues-Guimarães R, Guimarães RR, De Carvalho RW, Mayhé-Nunes AJ, Moya-Borja GE. Registro de Aphaereta laeviuscula (Spinola) (Hymenoptera:
Braconidae) e Nasonia vitripennis
(Walker) (Hymenoptera: Pteromalidae)
como parasitóide de Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), no
estado do Rio de Jane. Neotrop Entomol.
2006;35(3):402-7. doi:10.1590/s1519-566x2006000300017.
29. De Souza JR, Pires MS, Sanavria A.
Influência d o clima e da cobertura de solo na
mortalidade de Cochliomyia hominivorax (coquerel, 1958) (Diptera: Calliphoridae) e na atuação de seus inimigos naturais. Biosci J.
2010;26(1):136-46.
30. Welch JB. Predation by Spiders on Ground-Released Screwworm Flies, Cochliomyia hominivorax (Diptera: Calliphoridae) in a Mountainous Area of Southern Mexico. J Arachnol.
1993;21(1):23-8.
31. Viera C, editor.
Arácnidos de Uruguay: diversidad, comportamiento y ecología. Montevideo: Ediciones
de la Banda Oriental; 2011. 237p.
32. Madeira NG. Would Chrysomya albiceps (Diptera: Calliphoridae) be a beneficial species? Arq
Bras Med Vet Zootec. 2001;53(2):1-5.
doi:10.1590/S0102-09352001000200004.
33. Norris KR. The bionomics of blow flies. Annu
Rev Entomol. 1965;10:47-68.
34. Rodrigues-García C. Radiomarcacao de Chrysomya megacephala (Fabricius,
1794) (Diptera, Calliphoridae) e criacao
de Belonuchus rufipennis (Fabricius, 1801) (Coleoptera, Staphulinidae)
em ovos desta
mosca [doctoral’s thesis]. São Paulo (BR): Universidad Estadual de São
Paulo; 1993. 88p.
35. Little VA. General and Applied Entomology. 3rd ed.
New York: Harper & Row; 1972. 527p.
36. Reck J, Marks
FS, Rodrigues RO, Souza UA, Webster A, Leite RC, Gonzales JC, Klafke GM, Martins JR. Does
Rhipicephalus microplus tick infestation increase the
risk for myiasis caused by Cochliomyia hominivorax in cattle? Prev Vet
Med. 2014;113(1):59-62. doi:10.1016/j.prevetmed.2013.10.006.
37. Venzal JM, Castro O, Cabrera PA, de Souza
CG, Guglielmone AA. Las garrapatas de Uruguay: especies, hospedadores, distribución e importancia
sanitaria. Veterinaria (Montevideo).
2003;30(150-151):17-28.
38. Estrada-Peña A, Venzal JM, Mangold AJ, Cafrune MM, Guglielmone AA. The Amblyomma
maculatum Koch, 1844 (Acari: Ixodidae: Amblyomminae)
tick group: diagnostic characters, description of the larva of A. parvitarsum Neumann, 1901, 16S rDNA sequences, distribution
and hosts. Syst Parasitol. 2005;60(2):99-112.
doi:10.1007/s11230-004-1382-9.
39. Martins TF, Lado P, Labruna MB, Venzal JM. El género Amblyomma (Acari: Ixodidae) en Uruguay:
especies, distribución, hospedadores, importancia sanitaria y claves para la
determinación de adultos y ninfas. Veterinaria (Montevideo).
2014;50(193):26-41.
40. Nava S, Venzal JM, Labruna MB, Mastropaolo M, González EM, Mangold
AJ, Guglielmone AA. Hosts, distribution
and genetic divergence (16S
rDNA) of Amblyomma dubitatum (Acari: Ixodidae). Exp Appl Acarol.
2010;51(4):335-51. doi:10.1007/s10493-009-9331-6.
41. Saracho-Bottero MN, Venzal JM, Tarragona
EL, Thompson CS, Mangold AJ, Beati
L, Guglielmone AA, Nava S. The
Ixodes ricinus complex (Acari: Ixodidae) in the Southern Cone
of America: Ixodes pararicinus, Ixodes aragaoi, and
Ixodes sp. cf. I. affinis. Parasitol Res. 2020;119(1):43-54.
doi:10.1007/s00436-019-06470-z.
42. Rodríguez Diego J,
Olivares Orozco J, Sánchez Castilleja Y, Arece García J. El Gusano Barrenador
del Ganado, Cochliomyia hominivorax (Diptera: Calliphoridae): un
problema en la salud animal y humana. Rev Salud Anim.
2016;38(2):120-30.
43. Grisi L, Leite RC, Martins JR, Barros AT, Andreotti R, Cançado PH, León AA,
Pereira JB, Villela HS. Reassessment of the potential economic
impact of cattle parasites in Brazil. Rev Bras Parasitol Vet. 2014;23(2):150-6.
doi:10.1590/s1984-29612014042.
44. Remedios M. Ficha zoológica: Dermatobia
hominis Linnaeus, 1781 (Diptera:
Oestridae). Noticias de la SZU. 2016;9(34):38-9.
45. Gracia MJ, Ruíz de Arcaute M, Ferrer LM,
Ramo M, Jiménez C, Figueras L. Oestrosis:
parasitism by Oestrus
ovis. Small Rumin
Res. 2019;181(January):91-8.
doi:10.1016/j.smallrumres.2019.04.017.
46. Christen JA. Molecular-Based Identification of the New World
Screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae)
[doctoral’s thesis]. Lincoln (US): University of
Nebraska; 2008. 215p.
47. Lyra ML, Hatadani LM, de Azeredo-Espin AM, Klaczko LB.
Wing morphometry as a tool for correct identification of primary and secondary
New World screwworm fly. Bull Entomol Res.
2010;100(1):19-26. doi:10.1017/S0007485309006762.
48. López VG, Romero MI, Parra-Henao G.
Gastric and intestinal myiasis due to Ornidia obesa (Diptera: Syrphidae) in humans: first report in colombia.
Revista MVZ Córdoba. 2017;22(1):5755-60.
doi:10.21897/rmvz.935.
49. Carrão DL, Hernandez JMF, Cardoso JD, Correia TR, Araújo JL, Ubiali DG. Dacryoadenitis caused by Cochliomyia
macellaria (Diptera: Calliphoridae) in a sambar deer (Rusa unicolor) in Rio de Janeiro, Brazil.
Vet Parasitol Reg Stud Reports. 2021;23:100504. doi:10.1016/j.vprsr.2020.100504.
50. Baumgartner DL, Greenberg B. The Genus Chrysomya (Diptera: Calliphoridae)
in the New World. J Med Entomol. 1984;21(1):105-13.
doi:10.1093/jmedent/21.1.105.
51. Azeredo-Espin AM, Madeira NG. Primary myiasis in dog caused by Phaenicia eximia (Diptera:Calliphoridae)
and preliminary mitochondrial DNA analysis of the species in Brazil. J Med Entomol. 1996;33(5):839-43. doi:10.1093/jmedent/33.5.839.
52. Moretti TC, Thyssen PJ. Miíase primária em coelho doméstico causada por Lucilia
eximia (Diptera: Calliphoridae)
no Brasil: relato de caso. Arq Bras Med Vet Zootec.
2006;58(1):28-30. doi:10.1590/s0102-09352006000100005.
53. Bonino Morlan J, Casaretto A.
Principales patologías en los actuales sistemas de producción ovina del
Uruguay: una puesta al día. In: XL Jornadas Uruguayas
de Buiatría. Paysandú: CMVP; 2012. p.19-29.
54. Farkas R, Hall MJ, Bouzagou AK, Lhor Y, Khallaayoune K. Traumatic
myiasis in dogs caused by Wohlfahrtia magnifica and its importance in the epidemiology of wohlfahrtiosis of livestock. Med Vet Entomol.
2009;23(Suppl 1):80-5. doi:10.1111/j.1365-2915.2008.00772.x.
55. Valledor MS, Petraccia L, Cabral P, Castro
O, Décia L, Xavier V, Altuna
M, Marques L, Casás G, Dominguez D, Lado P. Resultados del Diagnostico de Bicheras Obtenidas en el Departamento
de Artigas Durante 13 Semanas (Enero
– Abril 09). In: 6tas Jornadas Técnicas de Facultad de Veterinaria.
Montevideo: Facultad de Veterinaria;
2009. p. 1301.
56. Heath AC. Beneficial aspects of blowflies (Diptera: Calliphoridae). N Z Entomol.
1982;7(3):343-8. doi:10.1080/00779962.1982.9722422.
57. Clement SL, Hellier BC, Elberson LR, Staska RT, Evans MA. Flies (Diptera: Muscidae:
Calliphoridae) are efficient pollinators of Allium ampeloprasum L. (Alliaceae) in field cages. J Econ Entomol. 2007;100(1):131-5. doi:10.1603/0022-0493(2007)100[131:fdmcae]2.0.co;2.
58. Saeed S, Naqqash MN, Jaleel W, Saeed Q, Ghouri F. The effect of blow flies (Diptera: Calliphoridae) on the size and weight of mangos (Mangifera
indica L.). PeerJ. 2016;4:e2076.
doi:10.7717/peerj.2076.
59. Oliveira PE, Rech AR. Floral biology and
pollination in Brazil: history and possibilities. Acta Bot Bras.
2018;32(3):321-8.
60. Rusch TW, Adutwumwaah
A, Beebe LEJ, Tomberlin JK, Tarone
AM. The upper thermal tolerance of the secondary screwworm, Cochliomyia
macellaria Fabricius (Diptera: Calliphoridae).
J Therm Biol. 2019;85:102405.
doi:10.1016/j.jtherbio.2019.102405.
61. Paulo DF, Junqueira ACM, Arp AP, Vieira
AS, Ceballos J, Skoda SR, Pérez-de-León AA, Sagel A,
McMillan WO, Scott MJ, Concha C, Azeredo-Espin AML.
Disruption of the odorant coreceptor Orco impairs
foraging and host finding behaviors in the New World screwworm fly. Sci Rep. 2021;11(1):11379.
doi:10.1038/s41598-021-90649-x.
62. Costamagna
SR, Visciarelli EC, Lucchi
LD, Basabe NE, Esteban MP, Oliva A. Aportes al conocimiento de los dípteros ciclorrafos en el área urbana de Bahía Blanca (provincia de
Buenos Aires), Argentina. Rev Mus Argent Cienc
Nat. 2007;9(1):1-4.
63. Dufek MI, Oscherov
EB, Damborsky MP, Mulieri PR.
Assessment of the Abundance and Diversity of Calliphoridae
and Sarcophagidae (Diptera) in Sites With Different Degrees of Human Impact in the Iberá Wetlands (Argentina). J
Med Entomol. 2016;53(4):827-35. doi:10.1093/jme/tjw045.
64. Luz RT, Azevedo WTA, Silva AS, Lessa CSS, Maia VC, Aguiar VM. Population fluctuation, influence of abiotic factors and the height of
traps on the abundance and richness of Calliphoridae
and Mesembrinellidae. J Med Entomol. 2020;57(6):1748-57. doi:10.1093/jme/tjaa092.
65. Schnack
JA, Mariluis JC, Centeno N, Muzon
J. Composición específica, ecología y sinantropía de Calllphoridae (Insecta: Diptera) en el Gran Buenos Aires. Rev
Soc Entomol Arg. 1995;54(1-4):161-71.
66. Coronado A, Kowalski A. Current status of the New World screwworm Cochliomyia hominivorax in
Venezuela. Med Vet Entomol.
2009;23(Suppl 1):106-10.
doi:10.1111/j.1365-2915.2008.00794.x.
67. Martínez M, Remedios
M, Goñi B. Lista de los Calliphoridae (Diptera: Muscoporpha) del
Uruguay. Bol Soc zoológica Urug.
2016;25(1):35-51.
68. Bermúdez SE, Espinosa
JD, Cielo AB, Clavel F, Subía J, Barrios S, Medianero E. Incidence
of myiasis in Panama during the
eradication of Cochliomyia hominivorax (Coquerel 1858, Diptera: Calliphoridae) (2002-2005). Mem
Inst Oswaldo Cruz. 2007;102(6):675-9. doi:10.1590/s0074-02762007005000074.
69. Sanders D, Sutter L, van Veen FJ. The loss of indirect interactions
leads to cascading extinctions of carnivores. Ecol Lett.
2013;16(5):664-9. doi:10.1111/ele.12096.
Additional
information
Author contribution statement: All
authors conceived, discussed and wrote the manuscript. The final version of the
manuscript was accepted by all authors.
Editor:: The
following editor approved this article. Milka Ferrer (https://orcid.org/0000-0002-5501-064X) Universidad de la
República, Facultad de Agronomía, Montevideo, Uruguay