Using whole oats grain as a source of fiber in calves’ rations

Keywords: cattle, growth, effective fiber, digestion, feed conversion

Abstract

Two experiments were carried out aiming to study the value of whole oats (WO) as a potential source of physically effective fiber (peNDF) in rations for calves. In experiment 1, 24 Hereford calves (177 ± 18 kg) were randomly assigned to eight groups and these into one of four experimental rations (79% concentrate), varying in the replacement level of grass hay (GH) for WO: 0:21, 7:14, 14:7, 21:0% dry matter (DM) basis WO:GH, respectively. Increasing WO level resulted in a quadratic response for peNDF (P= 0.04) with values above 15% of dm. Intake increased quadratically (P= 0.03) and dm digestibility increased linearly (P= 0.03). As a result, feed conversion efficiency tended to improve (P= 0.08). In Experiment 2, four rumen cannulated steers were assigned in a crossover design to one of two experimental rations (65% concentrate) varying in peNDF fiber source: 35% gh or 35% WO, aiming to study the fermentative pattern. Replacing GH for WO reduced mean daily rumen pH (5.9 vs. 6.3, P < 0.01), varying between 6.1 and 5.8, and always below pH values in gh. No differences were observed for the potentially degradable dm fraction, but fermentation rate was higher for WO (35.0 vs. 9.0 %/ h; P= 0.02), hence increasing effective degradability (58.3 vs. 65.4%; P= 0.048). Results from both experiments suggest it is viable to use WO as a peNDF source for concentrated rations.

Downloads

Download data is not yet available.

References

AFRC. Energy and Protein requirements of ruminants. Cambridge: CAB International; 1993. 159p.

Allen MS. Drives and limits to feed intake in ruminants. Anim Prod Sci. 2014;54:1513-24.

Arelovich HM, Abney CS, Vizcarra JA, Galyean ML. Effects of dietary neutral detergent fiber on intakes of dry matter and net energy by dairy and beef cattle: analysis of published data. Prof Anim Sci. 2008;24:375-83.

Beauchemin KA, McAllister TA, Dong Y, Farr BI, Cheng KJ. Effects of mastication on digestion of whole cereal grains by cattle. J Anim Sci. 1994;72:236-46.

Beauchemin KA, Yang WZ. Effects of Physically Effective Fiber on Intake, Chewing Activity, and Ruminal Acidosis for Dairy Cows Fed Diets Based on Corn Silage. J Dairy Sci. 2005;88:2117-29.

Beretta V, Simeone A, Elizalde JC, Franco J, Bentancur O, Ferrés A, Aycaguer S, Iriñiz J, Martínez V. Alternative fiber sources for steers and calves fed high grain feedlot diets. Anim Prod Sci. 2010;50:410-3.

Beretta V, Simeone A, Franco J, Casaretto F, Mondelli S, Valdez G. Using self-feeders with high concentrate diets for finishing beef cattle. In: Book of Abstracts of 69th Meeting of the European Federation of Animal Science. Wageningen: Wageningen Academic Publishers; 2018. p. 486.

Fox DG, Tedeschi LO. Application of physically effective fiber in diets for feedlot cattle. In: Proceedings of Plains Nutrition Conference; 2002 Apr 25-26; San Antonio, Texas [Internet]. Texas: Texas A&M Research and Extension Center; 2002 [cited 2020 Sep 25]. p. 67-81. Available from: https://bit.ly/2EBQ7qK.

González LA, Manteca X, Calsamiglia S, Schwartzkopf-Genswein KS, Ferret A. Ruminal acidosis in feedlot cattle: interplay between feed ingredients, rumen function and feeding behavior. Anim Feed Sci Tech. 2012;172:66-79.

Guidelines for uniform beef improvement programs [Internet]. 9th ed. Prairie (MS): Beef Improvement Federation; 2016 [cited 2020 Sep 23]. 185p. Available from: https://bit.ly/3hTCall.

Heinrichs J, Kononoff P. Evaluating particle size of forages and TMRs using the New Penn State Forage Particle Separator [Internet]. Pennsylvania: Pennsylvania State University; 2002 [cited 2020 Sep 25]. 14p. (DAS; 02- 42). Available from: https://bit.ly/340aMxm.

Herrera-Saldana RE, Huber JT, Poore MH. Dry Matter, Crude Protein, and Starch Degradability of Five Cereal Grains. J Dairy Sci. 1990;73(9):2386-93.

Huntington GB, Harmon DL, Richards CJ. Sites, rates, and limits of starch digestion and glucose metabolism in growing cattle. J Anim Sci. 2006;84(E. Suppl.):E14-24.

Latimer GW, editor. Official methods of analysis. 19th ed. Gaithersburg (MD): AOAC; 2012. 2v.

McAllister TA, Gibb DJ, Beauchemin KA, Wang Y. Starch type, structure and ruminal digestion. In: Cattle Grain Processing Symposium; 2006 Nov 15-17; Tulsa, Oklahoma, United States [Internet]. Stillwater: University of Oklahoma; 2007 [cited 2020 Sep 25]. p. 30-41. Avalilable from: https://bit.ly/33XITpI.

Mertens DR. Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci. 1997;80:1463-81.

Mertens DR. Measuring fiber and its effectiveness in ruminant diets. In: Proceedings of Plains Nutrition Conference; 2002 Apr 25-26; San Antonio, Texas [Internet]. Texas: Texas A&M Research and Extension Center; 2002 [cited 2020 Sep 25]. p. 40-66. Available from: https://bit.ly/368PbWi.

Miner JL. Recent Advances in the central control of intake in ruminants. J Anim Sci. 1992;70:1283-9.

Morgan CA, Campling RC. Digestibility of whole barley and oat grains by cattle of different ages. Anim Sci. 1978;27(3):323-9.

National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle. 8th rev ed. Washington: The National Academies Press; 2016. 494p.

National Research Council. Nutrient requirements of beef cattle. 7th ed. Washington: National Academic Press; 1996. 248p.

Ørskov ER, Flatt WP, Moe PW. Fermentation balance approach to estimate extent of fermentation and efficiency of volatile fatty acid formation in ruminants. J Dairy Sci. 1968;51:1429-35.

Ørskov ER, Hovell FD, Mould F. The use of the nylon bag technique for evaluation of feedstuffs. Trop Anim Prod. 1980;5(3):195-213.

Ørskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci. 1979;92:499-503.

Owens FN, Secrist DS, Hill WJ, Gill DR. The Effect of Grain Source and Grain Processing on Performance of Feedlot Cattle: a Review. J Anim Sci. 1997;75:868-79.

Owens FN, Soderlund S. Ruminal and post ruminal starch digestion by cattle. In: Cattle Grain Processing Symposium; 2006 Nov 15-17; Tulsa, Oklahoma, United States [Internet]. Stillwater: University of Oklahoma; 2007 [cited 2020 Sep 25]. p. 116-28. Avalilable from: https://bit.ly/33XITpI.

Owens FN, Zinn RA, Kim YK. Limits to starch digestion in the ruminant small intestine. J Anim Sci. 1986;63:1634-48.

Pacheco RDL, Cruz GD. Acidosis in cattle. In: Puniya AK, Singh R, Kamra DN, editors. Rumen Microbiology: from evolution to revolution. New Delhi: Springer; 2015. p. 315-27.

Parra V, Rifle SL, Elizalde JC. Estrategias de inclusión del corral en los sistemas ganaderos de la Argentina. Balcarce: the authors; 2006. 180p.

Pordomingo AJ, Jonas O, Adra M, Juan NA, Azcárate MP. Evaluación de dietas basadas en grano entero, sin fibra larga, para engorde de bovinos a corral. Rev investig agropecu. 2002;31(1):1-23.

Schwartzkopf-Genswein KS, Beauchemin KA, Gibb DJ, Crews DH, Hickman DD, Streeter M, McAllister TA. Effect of bunk management on feeding behavior, ruminal acidosis and performance of feedlot cattle: a review. J Anim Sci. 2003;81(E. Suppl. 2):E149-58.

Simeone A, Beretta V. Evaluation of a self-feeding system with a total mixed ration without long fiber to lot-fed beef calves. Agrociencia Uruguay. 2018;22(2):1-9.

Simeone A, Beretta V, Elizalde JC. Encierre de terneros o sistema ADT. In: Simeone A, Beretta V, editors. Jornada Anual de la Unidad de Producción Intensiva de Carne: una década de investigación para una ganadería más eficiente. Paysandú: Facultad de Agronomía; 2008. p. 38-41.

Simeone A, Beretta V, Elizalde JC, Franco J, Viera G. Effect of removing long fibre from beef cattle feedlot diets. In: Book of abstracts for the 10th Word Conference on animal Production. Netherlands: Wageningen Academic Publishers; 2008. p. 130.

Stock R, Britton R. G91-1047 Acidosis. In: Historical Materials from University of Nebraska-Lincoln Extension [Internet]. 1991 [cited 2020 Sep 25]. 8p. Available from: https://bit.ly/2RWeDG7.

Tejada de Hernández I. Manual de laboratorio para análisis de ingredientes utilizados en la alimentación animal. México: Instituto Nacional de Investigaciones Pecuarias; 1983. 387p.

Thonney ML, Hogue DE. Formulation of ruminant diets using by-product ingredients on the basis of fermentable NDF and nonstructural carbohydrate. In: Cattle Grain Processing Symposium; 2006 Nov 15-17; Tulsa, Oklahoma, United States [Internet]. Stillwater: University of Oklahoma; 2007 [cited 2020 Sep 25]. p. 205-13. Avalilable from: https://bit.ly/33XITpI.

Trujillo AI, Bruni M, Chilibroste P. Nutrient content and nutrient availability of sorghum wet distiller’s grain in comparison with the parental grain for ruminants. J Sci Food Agric [Internet]. 2016 [cited 2020 Sep 25];97(8):2353-7. Available from: https://bit.ly/342kj75.

Van Keulen J, Young BA. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci. 1977;44:282-7.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583-97.

Vasconcelos JT, Galyean ML. Technical Note: do dietary net energy values calculated from performance data offer increased sensitivity for detecting treatment differences? J Anim Sci. 2008;86:2756–60.

Zinn RA. Influence of Processing on the Feeding Value of Oats for Feedlot Cattle. J Anim Sci. 1993;71:2303-9.

Published
2021-01-13
How to Cite
1.
Beretta V, Simeone A, Bentancur O, Pancini S, Banchero N, García E, Martínez V, Oneto L. Using whole oats grain as a source of fiber in calves’ rations. Agrociencia Uruguay [Internet]. 13Jan.2021 [cited 15May2021];25(1):e372. Available from: http://agrocienciauruguay.uy/ojs/index.php/agrociencia/article/view/372
Section
Animal production and pastures